As lithium intercalating complex metal oxides become more widely used in energy storage devices, there is an increasing need to understand their environmental impact at the end of their life cycle due to the lack of recycling options. In this study, we examine the biological impact of a panel of nanoscale lithium nickel manganese cobalt oxides (LixNiyMnzCo1−y−zO2, 0 < x, y, z < 1, abbreviated as NMCs), to a model Gram-positive bacterium, Bacillus subtilis in terms of cellular respiration and growth. A highly sensitive single-cell gel electrophoresis method is also applied for the first time to understand the genotoxicity of this nanomaterial to bacterial cells. Results from these assays indicate that the free Ni and Co ions released from the incongruent dissolution of the NMC material in B. subtilis growth media induced both hindered growth and cellular respiration. More remarkably, the DNA damage induced by the combination of the two ions in solution is comparble to that induced by the NMC material, which suggests the free Ni and Co ions are responsible for the toxicity observed. A material redesign by enriching Mn is also presented. The combined approaches of evaluating impact on bacterial growth, respiration, DNA damage at a single-cell level, as well as other phenotypical changes allows us to probe the nanomaterial and bacterial cells from a mechanistic prospective, and provides a useful means to an understanding of bacterial response to new potential environmental stressors.
more »
« less
Nanoscale battery cathode materials induce DNA damage in bacteria
The increasing use of nanoscale lithium nickel manganese cobalt oxide (Li x Ni y Mn z Co 1−y−z O 2 , NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano–bio interactions.
more »
« less
- Award ID(s):
- 2001611
- PAR ID:
- 10198599
- Date Published:
- Journal Name:
- Chemical Science
- ISSN:
- 2041-6520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium nickel manganese cobalt oxide (Li x Ni y Mn z Co 1−y−z O 2 , 0 < x , y , z < 1, also known as NMC) is a class of cathode materials used in lithium ion batteries. Despite the increasing use of NMC in nanoparticle form for next-generation energy storage applications, the potential environmental impact of released nanoscale NMC is not well characterized. Previously, we showed that the released nickel and cobalt ions from nanoscale Li 1/3 Ni 1/3 Mn 1/3 Co 1/3 O 2 were largely responsible for impacting the growth and survival of the Gram-negative bacterium Shewanella oneidensis MR-1 (M. N. Hang et al. , Chem. Mater. , 2016, 28 , 1092). Here, we show the first steps toward material redesign of NMC to mitigate its biological impact and to determine how the chemical composition of NMC can significantly alter the biological impact on S. oneidensis . We first synthesized NMC with various stoichiometries, with an aim to reduce the Ni and Co content: Li 0.68 Ni 0.31 Mn 0.39 Co 0.30 O 2 , Li 0.61 Ni 0.23 Mn 0.55 Co 0.22 O 2 , and Li 0.52 Ni 0.14 Mn 0.72 Co 0.14 O 2 . Then, S. oneidensis were exposed to 5 mg L −1 of these NMC formulations, and the impact on bacterial oxygen consumption was analyzed. Measurements of the NMC composition, by X-ray photoelectron spectroscopy, and composition of the nanoparticle suspension aqueous phase, by inductively coupled plasma-optical emission spectroscopy, showed the release of Li, Ni, Mn, and Co ions. Bacterial inhibition due to redesigned NMC exposure can be ascribed largely to the impact of ionic metal species released from the NMC, most notably Ni and Co. Tuning the NMC stoichiometry to have increased Mn at the expense of Ni and Co showed lowered, but not completely mitigated, biological impact. This study reveals that the chemical composition of NMC nanomaterials is an important parameter to consider in sustainable material design and usage.more » « less
-
Lithium intercalation compounds, such as the complex metal oxide, lithium nickel manganese cobalt oxide (LiNi x Mn y Co 1−x−y O 2 , herein referred to as NMC), have demonstrated their utility as energy storage materials. In response to recent concerns about the global supply of cobalt, industrially synthesized NMCs are shifting toward using NMC compositions with enriched nickel content. However, nickel is one of the more toxic components of NMC materials, meriting investigation of the toxicity of these materials on environmentally relevant organisms. Herein, the toxicity of both nanoscale and microscale Ni-enriched NMCs to the bacterium, Shewanella oneidensis MR-1, and the zooplankton, Daphnia magna , was assessed. Unexpectedly, for the bacteria, all NMC materials exhibited similar toxicity when used at equal surface area-based doses, despite the different nickel content in each. Material dissolution to toxic species, namely nickel and cobalt ions, was therefore modelled using a combined density functional theory and thermodynamics approach, which showed an increase in material stability due to the Ni-enriched material containing nickel with an oxidation state >2. The increased stability of this material means that similar dissolution is expected between Ni-enriched NMC and equistoichiometric NMC, which is what was found in experiments. For S. oneidensis , the toxicity of the released ions recapitulated toxicity of NMC nanoparticles. For D. magna , nickel enrichment increased the observed toxicity of NMC, but this toxicity was not due to ion release. Association of the NMC was observed with both S. oneidensis and D. magna. This work demonstrates that for organisms where the major mode of toxicity is based on ion release, including more nickel in NMC does not impact toxicity due to increased particle stability; however, for organisms where the core composition dictates the toxicity, including more nickel in the redesign strategy may lead to greater toxicity due to nanoparticle-specific impacts on the organism.more » « less
-
Use of complex metal oxide nanoparticles has drastically risen in recent years, especially due to their utility in electric vehicle batteries. However, use of these materials has outpaced our understanding of how they might affect environmental organisms, which they could encounter through release during manufacture, use, and disposal. In particular, little is known about the effects of chronic exposure to complex metal oxide nanoparticles. Here, we have focused on an environmentally-relevant bacterial species, Shewanella oneidensis, which is ubiquitous in nature and responsible for bioremediation of heavy metals, and assessed the toxic effects of nanoscale lithiated nickel manganese cobalt oxide (NMC), which is an emerging battery cathode material for electronic devices. We previously reported that chronic exposure of S. oneidensis to NMC results in the emergence of an adaptive phenotype where the bacteria are able to tolerate otherwise lethal concentrations of NMC. In the present study, we aim to investigate the role of reactive oxygen species (ROS) and changes in phenotype of the NMC-adapted bacterial population. We found that NMC-exposed bacteria possess ROS-containing membrane vesicles, as well as an increased propensity to generate random DNA mutations and harbor other DNA damage. Thus, our data indicate substantial genetic-level variation in bacteria that results from chronic exposure to toxic complex metal oxide nanomaterials.more » « less
-
Abstract Understanding the behavior of lithium‐ion batteries (LIBs) under extreme conditions, for example, low temperature, is key to broad adoption of LIBs in various application scenarios. LIBs, poor performance at low temperatures is often attributed to the inferior lithium‐ion transport in the electrolyte, which has motivated new electrolyte development as well as the battery preheating approach that is popular in electric vehicles. A significant irrevocable capacity loss, however, is not resolved by these measures nor well understood. Herein, multiphase, multiscale chemomechanical behaviors in composite LiNixMnyCozO2(NMC,x +y +z = 1) cathodes at extremely low temperatures are systematically elucidated. The low‐temperature storage of LIBs can result in irreversible structural damage in active electrodes, which can negatively impact the subsequent battery cycling performance at ambient temperature. Beside developing electrolytes that have stable performance, designing batteries for use in a wide temperature range also calls for the development of electrode components that are structurally and morphologically robust when the cell is switched between different temperatures.more » « less