Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5 Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm. Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854. Acknowledgment This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS. Figure 1
more »
« less
Multiphase, Multiscale Chemomechanics at Extreme Low Temperatures: Battery Electrodes for Operation in a Wide Temperature Range
Abstract Understanding the behavior of lithium‐ion batteries (LIBs) under extreme conditions, for example, low temperature, is key to broad adoption of LIBs in various application scenarios. LIBs, poor performance at low temperatures is often attributed to the inferior lithium‐ion transport in the electrolyte, which has motivated new electrolyte development as well as the battery preheating approach that is popular in electric vehicles. A significant irrevocable capacity loss, however, is not resolved by these measures nor well understood. Herein, multiphase, multiscale chemomechanical behaviors in composite LiNixMnyCozO2(NMC,x +y +z = 1) cathodes at extremely low temperatures are systematically elucidated. The low‐temperature storage of LIBs can result in irreversible structural damage in active electrodes, which can negatively impact the subsequent battery cycling performance at ambient temperature. Beside developing electrolytes that have stable performance, designing batteries for use in a wide temperature range also calls for the development of electrode components that are structurally and morphologically robust when the cell is switched between different temperatures.
more »
« less
- PAR ID:
- 10449218
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 11
- Issue:
- 37
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium-ion batteries (LIBs) are central in modern life, where they are found in products from smartphones to laptops to electric vehicles. The demand for efficient and sustainable batteries is higher than ever, with the predicted depletion of lithium sources after 2050 [1-3]. As an alternative to LIBs, next-generation fluoride-ion batteries (FIBs) are now being studied since fluorine is more abundant than lithium. While the majority of FIBs reported use solid electrolytes, liquid electrolytes are of interest for room-temperature applications and they are the focus of this article. This article begins by providing a concise background on specific concepts of battery chemistry that can be used as a basis to expand micro/nanotechnology education curricula to include alternative battery technologies. Key points on defining battery components, battery capacity, and redox reactions at play (including differences between redox reactions in LIBs vs FIBs) are presented. A survey on recent developments of liquid electrolytes in FIBs is derived, where three chemical strategies for designing liquid electrolytes for FIB are determined. This analysis of FIB liquid electrolytes studied so far provides a perspective to holistically improve room-temperature FIBs by tailoring the anode, cathode, and electrolyte combination. Ultimately, the survey of literature developed in the article can have an exemplary role in bibliographic research on alternative battery technologies for students in secondary, two-year, or four-year higher education institutions.more » « less
-
Sodium metal batteries (SMBs) are cost-effective and environmentally sustainable alternative to lithium batteries. However, at present, limitations such as poor compatibility, low coulombic efficiency (CE), and high electrolyte cost hinder their widespread application. Herein, we propose a non-flammable, low-concentration electrolyte composed of 0.3 M NaPF6in propylene carbonate (PC), fluoroethylene carbonate (FEC), and 1,1,2,2-tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TTE). This low-concentration electrolyte not only reduces cost but also delivers rapid ion diffusion and superior wetting properties. While the Na||FePO4system with this electrolyte demonstrates slightly reduced performance at room temperature compared to standard-concentration formulations (S-PFT), it excels at both high (55 °C) and low (−20 °C) temperatures, showcasing its balanced performance. At 0.5 C (charge)/1 C (discharge), capacity retention reaches 92.8% at room temperature and 98.5% at elevated temperature, with CE values surpassing 99% and 99.63%, respectively, and significant performance sustained at −20 °C at 0.2 C. This electrolyte development thus offers a well-rounded, economically viable path to high-performance SMBs for diverse environmental applications.more » « less
-
Abstract Resources used in lithium‐ion batteries are becoming more expensive due to their high demand, and the global cobalt market heavily depends on supplies from countries with high geopolitical risks. Alternative battery technologies including magnesium‐ion batteries are therefore desirable. Progress toward practical magnesium‐ion batteries are impeded by an absence of suitable anodes that can operate with conventional electrolyte solvents. Although alloy‐type magnesium‐ion battery anodes are compatible with common electrolyte solvents, they suffer from severe failure associated with huge volume changes during cycling. Consequently, achieving more than 200 cycles in alloy‐type magnesium‐ion battery anodes remains a challenge. Here an unprecedented long‐cycle life of 1000 cycles, achieved at a relatively high (dis)charge rate of 3 C (current density: 922.5 mA g−1) in Mg2Ga5alloy‐type anode, taking advantage of near‐room‐temperatures solid–liquid phase transformation between Mg2Ga5(solid) and Ga (liquid), is demonstrated. This concept should open the way to the development of practical anodes for next‐generation magnesium‐ion batteries.more » « less
-
Understanding the behavior of pressure increases in lithium-ion (Li-ion) cells is essential for prolonging the lifespan of Li-ion battery cells and minimizing the safety risks associated with cell aging. This work investigates the effects of C-rates and temperature on pressure behavior in commercial lithium cobalt oxide (LCO)/graphite pouch cells. The battery is volumetrically constrained, and the mechanical pressure response is measured using a force gauge as the battery is cycled. The effect of the C-rate (1C, 2C, and 3C) and ambient temperature (10 ◦C, 25 ◦C, and 40 ◦C) on the increase in battery pressure is investigated. By analyzing the change in the minimum, maximum, and pressure difference per cycle, we identify and discuss the effects of different factors (i.e., SEI layer damage, electrolyte decomposition, lithium plating) on the pressure behavior. Operating at high C-rates or low temperatures rapidly increases the residual pressure as the battery is cycled. The results suggest that lithium plating is predominantly responsible for battery expansion and pressure increase during the cycle aging of Li-ion cells rather than electrolyte decomposition. Electrochemical impedance spectroscopy (EIS) measurements can support our conclusions. Postmortem analysis of the aged cells was performed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) to confirm the occurrence of lithium plating and film growth on the anodes of the aged cells. This study demonstrates that pressure measurements can provide insights into the aging mechanisms of Li-ion batteries and can be used as a reliable predictor of battery degradation.more » « less
An official website of the United States government
