skip to main content


Title: CSSI 2020 PI Meeting: Towards a National Cyberinfrastructure Ecosystem
This report is based on activities supported by the National Science Foundation under award number 2006409. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.  more » « less
Award ID(s):
2006409
NSF-PAR ID:
10198638
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
CSSI 2020 PI Meeting: Towards a National Cyberinfrastructure Ecosystem
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data provided by the Integrating Data science with Trees and Remote Sensing (IDTReeS) research group for use in the IDTReeS Competition.

    Geospatial and tabular data to be used in two data science tasks focused on using remote sensing data to quantify the locations, sizes and species identities of millions of trees and on determining how these methods generalize to other forests.

    Vector data are the geographic extents of Individual Tree Crown boundaries that have been identified by researchers in the IDTReeS group. The data were generated primarily by Sarah Graves, Sergio Marconi, and Benjamin Weinstein, with support from Stephanie Bohlman, Ethan White, and members of the IDTReeS group.

    Remote Sensing and Field data were generated by the National Ecological Observatory Network (NEON, Copyright © 2017 Battelle). Data were selected, downloaded, and packaged by Sergio Marconi. The most recent available data of the following products are provided:

    National Ecological Observatory Network. 2020. Data Product DP1.30010.001, High-resolution orthorectified camera imagery. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.

    National Ecological Observatory Network. 2020. Data Product DP1.30003.001, Discrete return LiDAR point cloud. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.

    National Ecological Observatory Network. 2020. Data Product DP1.10098.001, Woody plant vegetation structure. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.

    National Ecological Observatory Network. 2020. Data Product DP3.30015.001, Ecosystem structure. Provisional data downloaded from http://data.neonscience.org on March 4, 2020. Battelle, Boulder, CO, USA NEON. 2020.

    NEON has the following data policy:

    ‘The National Ecological Observatory Network is a program sponsored by the National Science Foundation and operated under cooperative agreement by Battelle Memorial Institute. This material is based in part upon work supported by the National Science Foundation through the NEON Program.’

    THE NEON DATA PRODUCTS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE NEON DATA PRODUCTS BE LIABLE FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE NEON DATA PRODUCTS.

    This data is supported by the National Science Foundation through grant 1926542 and by the Gordon and Betty Moore Foundation's Data-Driven Discovery Initiative through grant GBMF4563 to E.P. White, and the NSF Dimension of Biodiversity program grant (DEB-1442280) and USDA/NIFA McIntire-Stennis program (FLA-FOR-005470). 
    more » « less
  2. Innovation training is considered critical for the future of our country, yet despite the important role, opportunities for students to develop innovation skills are limited. For STEM students, training in innovation principles and processes are frequently extra curricular pursuits, such as unpaid internships with start up organizations, shadowing innovation professionals, or obtaining an additional business degree or minor covering innovation principles. The National Science Foundation has funded the authors with a Science, Technology, Engineering and Mathematics (S STEM) grant to provide scholarships combined with research on best practices for recruitment, retention, and development of innovation skills for a diverse group of low income undergraduate students. Students in the program come from STEM disciplines in engineering and the physical sciences however, business students are also integrated into innovation courses although they are not funded by the S STEM grant Design, development, and implementation of the grant funded program’s first innovation related course, a 2 week fall intercession course will be presented Th is first year course is designed to provide the students with an introduction to innovation, develop and nurture the students’ innovation mindset and skills, and also help the students’ successful transition to college. The first-year two-week intercession course was designed and developed with two credit hours focusing on content related to innovation and one credit hour focusing on student success topics. The significant academic course components included: 1) interactive active-learning modules related to innovation processes, identifying where good ideas come from, working in teams, leadership, project management, and communication and presentation skills; 2) team innovation projects, one topic-assigned, applying skills learned in the content modules to develop innovation and team collaboration skills; and 3) integration of business students with STEM students which together gives viewpoints and experiences on product and customer needs. It is important to our nation’s health and safety to instill innovation in our students. In addition, today’s students are interested in innovation and in learning how to apply innovation techniques in their professional and personal lives. The course was designed for teams of four STEM students to one business student which provides a balanced input needed for this type of project taking into account the skillset of the technically oriented STEM students and the marketing-oriented business students, as well as personality types. This ensures that all voices are heard, and topical areas are addressed. There was no problem in getting faculty interest in developing the course, and the collaboration between retention professionals and faculty went well. After the course, an iterative improvement retrospective will be performed on the program as implemented to this point to inform improvements for next year’s cohort. This material is based upon work supported by the National Science Foundation under Grant No. 2030297. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. 
    more » « less
  3. Chen, Yan (Ed.)
    Do people have well-defined social preferences waiting to be applied when making decisions? Or do they have to construct social decisions on the spot? If the latter, how are those decisions influenced by the way in which information is acquired and evaluated? These temporal dynamics are fundamental to understanding how people trade off selfishness and prosociality in organizations and societies. Here, we investigate how the temporal dynamics of the choice process shape social decisions in three studies using response times and mouse tracking. In the first study, participants made binary decisions in mini-dictator games with and without time constraints. Using mouse trajectories and a starting time drift diffusion model, we find that, regardless of time constraints, selfish participants were delayed in processing others’ payoffs, whereas the opposite was true for prosocial participants. The independent mouse trajectory and computational modeling analyses identified consistent measures of the delay between considering one’s own and others’ payoffs (self-onset delay, SOD). This measure correlated with individual differences in prosociality and predicted heterogeneous effects of time constraints on preferences. We confirmed these results in two additional studies, one a purely behavioral study in which participants made decisions by pressing computer keys, and the other a replication of the mouse-tracking study. Together, these results indicate that people preferentially process either self or others’ payoffs early in the choice process. The intrachoice dynamics are crucial in shaping social preferences and might be manipulated via nudge policies (e.g., manipulating the display order or saliency of self and others’ outcomes) for behavior in managerial or other contexts. This paper was accepted by Yan Chen, behavioral economics and decisions analysis. Funding: F. Chen acknowledges support from the National Natural Science Foundation of China [Grants 71803174 and 72173113]. Z. Zhu acknowledges support from the Ministry of Science and Technology [Grant STI 2030-Major Projects 2021ZD0200409]. Q. Shen acknowledges support from the National Natural Science Foundation of China [Grants 71971199 and 71942004]. I. Krajbich acknowledges support from the U.S. National Science Foundation [Grant 2148982]. This work was also supported by the James McKeen Cattell Fund. Supplemental Material: The online appendix and data are available at https://doi.org/10.1287/mnsc.2023.4732 . 
    more » « less
  4. Obeid, I. (Ed.)
    The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do not have access to such data resources must rely on techniques in which existing models can be adapted to new datasets [6]. A preliminary version of this breast corpus release was tested in a pilot study using a baseline machine learning system, ResNet18 [7], that leverages several open-source Python tools. The pilot corpus was divided into three sets: train, development, and evaluation. Portions of these slides were manually annotated [1] using the nine labels in Table 1 [8] to identify five to ten examples of pathological features on each slide. Not every pathological feature is annotated, meaning excluded areas can include focuses particular to these labels that are not used for training. A summary of the number of patches within each label is given in Table 2. To maintain a balanced training set, 1,000 patches of each label were used to train the machine learning model. Throughout all sets, only annotated patches were involved in model development. The performance of this model in identifying all the patches in the evaluation set can be seen in the confusion matrix of classification accuracy in Table 3. The highest performing labels were background, 97% correct identification, and artifact, 76% correct identification. A correlation exists between labels with more than 6,000 development patches and accurate performance on the evaluation set. Additionally, these results indicated a need to further refine the annotation of invasive ductal carcinoma (“indc”), inflammation (“infl”), nonneoplastic features (“nneo”), normal (“norm”) and suspicious (“susp”). This pilot experiment motivated changes to the corpus that will be discussed in detail in this poster presentation. To increase the accuracy of the machine learning model, we modified how we addressed underperforming labels. One common source of error arose with how non-background labels were converted into patches. Large areas of background within other labels were isolated within a patch resulting in connective tissue misrepresenting a non-background label. In response, the annotation overlay margins were revised to exclude benign connective tissue in non-background labels. Corresponding patient reports and supporting immunohistochemical stains further guided annotation reviews. The microscopic diagnoses given by the primary pathologist in these reports detail the pathological findings within each tissue site, but not within each specific slide. The microscopic diagnoses informed revisions specifically targeting annotated regions classified as cancerous, ensuring that the labels “indc” and “dcis” were used only in situations where a micropathologist diagnosed it as such. Further differentiation of cancerous and precancerous labels, as well as the location of their focus on a slide, could be accomplished with supplemental immunohistochemically (IHC) stained slides. When distinguishing whether a focus is a nonneoplastic feature versus a cancerous growth, pathologists employ antigen targeting stains to the tissue in question to confirm the diagnosis. For example, a nonneoplastic feature of usual ductal hyperplasia will display diffuse staining for cytokeratin 5 (CK5) and no diffuse staining for estrogen receptor (ER), while a cancerous growth of ductal carcinoma in situ will have negative or focally positive staining for CK5 and diffuse staining for ER [9]. Many tissue samples contain cancerous and non-cancerous features with morphological overlaps that cause variability between annotators. The informative fields IHC slides provide could play an integral role in machine model pathology diagnostics. Following the revisions made on all the annotations, a second experiment was run using ResNet18. Compared to the pilot study, an increase of model prediction accuracy was seen for the labels indc, infl, nneo, norm, and null. This increase is correlated with an increase in annotated area and annotation accuracy. Model performance in identifying the suspicious label decreased by 25% due to the decrease of 57% in the total annotated area described by this label. A summary of the model performance is given in Table 4, which shows the new prediction accuracy and the absolute change in error rate compared to Table 3. The breast tissue subset we are developing includes 3,505 annotated breast pathology slides from 296 patients. The average size of a scanned SVS file is 363 MB. The annotations are stored in an XML format. A CSV version of the annotation file is also available which provides a flat, or simple, annotation that is easy for machine learning researchers to access and interface to their systems. Each patient is identified by an anonymized medical reference number. Within each patient’s directory, one or more sessions are identified, also anonymized to the first of the month in which the sample was taken. These sessions are broken into groupings of tissue taken on that date (in this case, breast tissue). A deidentified patient report stored as a flat text file is also available. Within these slides there are a total of 16,971 total annotated regions with an average of 4.84 annotations per slide. Among those annotations, 8,035 are non-cancerous (normal, background, null, and artifact,) 6,222 are carcinogenic signs (inflammation, nonneoplastic and suspicious,) and 2,714 are cancerous labels (ductal carcinoma in situ and invasive ductal carcinoma in situ.) The individual patients are split up into three sets: train, development, and evaluation. Of the 74 cancerous patients, 20 were allotted for both the development and evaluation sets, while the remain 34 were allotted for train. The remaining 222 patients were split up to preserve the overall distribution of labels within the corpus. This was done in hope of creating control sets for comparable studies. Overall, the development and evaluation sets each have 80 patients, while the training set has 136 patients. In a related component of this project, slides from the Fox Chase Cancer Center (FCCC) Biosample Repository (https://www.foxchase.org/research/facilities/genetic-research-facilities/biosample-repository -facility) are being digitized in addition to slides provided by Temple University Hospital. This data includes 18 different types of tissue including approximately 38.5% urinary tissue and 16.5% gynecological tissue. These slides and the metadata provided with them are already anonymized and include diagnoses in a spreadsheet with sample and patient ID. We plan to release over 13,000 unannotated slides from the FCCC Corpus simultaneously with v1.0.0 of TUDP. Details of this release will also be discussed in this poster. Few digitally annotated databases of pathology samples like TUDP exist due to the extensive data collection and processing required. The breast corpus subset should be released by November 2021. By December 2021 we should also release the unannotated FCCC data. We are currently annotating urinary tract data as well. We expect to release about 5,600 processed TUH slides in this subset. We have an additional 53,000 unprocessed TUH slides digitized. Corpora of this size will stimulate the development of a new generation of deep learning technology. In clinical settings where resources are limited, an assistive diagnoses model could support pathologists’ workload and even help prioritize suspected cancerous cases. ACKNOWLEDGMENTS This material is supported by the National Science Foundation under grants nos. CNS-1726188 and 1925494. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. REFERENCES [1] N. Shawki et al., “The Temple University Digital Pathology Corpus,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York City, New York, USA: Springer, 2020, pp. 67 104. https://www.springer.com/gp/book/9783030368432. [2] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning.” Major Research Instrumentation (MRI), Division of Computer and Network Systems, Award No. 1726188, January 1, 2018 – December 31, 2021. https://www. isip.piconepress.com/projects/nsf_dpath/. [3] A. Gulati et al., “Conformer: Convolution-augmented Transformer for Speech Recognition,” in Proceedings of the Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 5036-5040. https://doi.org/10.21437/interspeech.2020-3015. [4] C.-J. Wu et al., “Machine Learning at Facebook: Understanding Inference at the Edge,” in Proceedings of the IEEE International Symposium on High Performance Computer Architecture (HPCA), 2019, pp. 331–344. https://ieeexplore.ieee.org/document/8675201. [5] I. Caswell and B. Liang, “Recent Advances in Google Translate,” Google AI Blog: The latest from Google Research, 2020. [Online]. Available: https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html. [Accessed: 01-Aug-2021]. [6] V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid, and J. Picone, “Low Latency Real-Time Seizure Detection Using Transfer Deep Learning,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2021, pp. 1 7. https://www.isip. piconepress.com/publications/conference_proceedings/2021/ieee_spmb/eeg_transfer_learning/. [7] J. Picone, T. Farkas, I. Obeid, and Y. Persidsky, “MRI: High Performance Digital Pathology Using Big Data and Machine Learning,” Philadelphia, Pennsylvania, USA, 2020. https://www.isip.piconepress.com/publications/reports/2020/nsf/mri_dpath/. [8] I. Hunt, S. Husain, J. Simons, I. Obeid, and J. Picone, “Recent Advances in the Temple University Digital Pathology Corpus,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2019, pp. 1–4. https://ieeexplore.ieee.org/document/9037859. [9] A. P. Martinez, C. Cohen, K. Z. Hanley, and X. (Bill) Li, “Estrogen Receptor and Cytokeratin 5 Are Reliable Markers to Separate Usual Ductal Hyperplasia From Atypical Ductal Hyperplasia and Low-Grade Ductal Carcinoma In Situ,” Arch. Pathol. Lab. Med., vol. 140, no. 7, pp. 686–689, Apr. 2016. https://doi.org/10.5858/arpa.2015-0238-OA. 
    more » « less
  5. Since its publication, the authors of Wang et al. (2021) have brought to our attention an error in their article. A grant awarded by the National Science Foundation (grant no. MCB 1817985) to author Elizabeth Vierling was omitted from the Acknowledgements section. The correct Acknowledgements section is shown below. Acknowledgements We thank Suiwen Hou (Lanzhou University) and Zhaojun Ding (Shandong University) for providing the seeds used in this study. We thank Xiaoping Gou (Lanzhou University) and Ravishankar Palanivelu (University of Arizona) for critically reading the manuscript and for suggestions regarding the article. This work was supported by grants from National Natural Science Foundation of China (31870298) to SX, the US Department of Agriculture (USDA-CSREES-NRI-001030) and the National Science Foundation (MCB 1817985) to EV, and the Youth 1000-Talent Program of China (A279021801) to LY. 
    more » « less