skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatio-temporal classification at multiple resolutions using multi-view regularization
In this work, we present a multi-view framework to classify spatio-temporal phenomena at multiple resolutions. This approach utilizes the complementarity of features across different resolutions and improves the corresponding models by enforcing consistency of their predictions on unlabeled data. Unlike traditional multi-view learning problems, the key challenge in our case is that there is a many-to-one correspondence between instances across different resolutions, which needs to be explicitly modeled. Experiments on the real-world application of mapping urban areas using spatial raster datasets from satellite observations show the benefits of the proposed multi-view framework.  more » « less
Award ID(s):
1838159
PAR ID:
10198699
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
4117 to 4120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. fine resolutions but available training data is scarce. In this paper, we propose classification algorithms that leverage supervision from coarser resolutions to help train models on finer resolutions. The different resolutions are modeled as different views of the data in a multi-view framework that exploits the complementarity of features across different views to improve models on both views. Unlike traditional multi-view learning problems, the key challenge in our case is that there is no one-to-one correspondence between instances across different views in our case, which requires explicit modeling of the correspondence of instances across resolutions. We propose to use the features of instances at different resolutions to learn the correspondence between instances across resolutions using attention mechanism. Experiments on the real-world application of mapping urban areas using satellite observations and sentiment classification on text data shows the effectiveness of the proposed methods. 
    more » « less
  2. Data from many real-world applications can be naturally represented by multi-view networks where the different views encode different types of relationships (e.g., friendship, shared interests in music, etc.) between real-world individuals or entities. There is an urgent need for methods to obtain low-dimensional, information preserving and typically nonlinear embeddings of such multi-view networks. However, most of the work on multi-view learning focuses on data that lack a network structure, and most of the work on network embeddings has focused primarily on single-view networks. Against this background, we consider the multi-view network representation learning problem, i.e., the problem of constructing low-dimensional information preserving embeddings of multi-view networks. Specifically, we investigate a novel Generative Adversarial Network (GAN) framework for Multi-View Network Embedding, namely MEGAN, aimed at preserving the information from the individual network views, while accounting for connectivity across (and hence complementarity of and correlations between) different views. The results of our experiments on two real-world multi-view data sets show that the embeddings obtained using MEGAN outperform the state-of-the-art methods on node classification, link prediction and visualization tasks. 
    more » « less
  3. Multi-view data are extensively accessible nowadays thanks to various types of features, different view-points and sensors which tend to facilitate better representation in many key applications. This survey covers the topic of robust multi-view data representation, centered around several major visual applications. First of all, we formulate a unified learning framework which is able to model most existing multi-view learning and domain adaptation in this line. Following this, we conduct a comprehensive discussion across these two problems by reviewing the algorithms along these two topics, including multi-view clustering, multi-view classification, zero-shot learning, and domain adaption. We further present more practical challenges in multi-view data analysis. Finally, we discuss future research including incomplete, unbalance, large-scale multi-view learning. This would benefit AI community from literature review to future direction. 
    more » « less
  4. Data from many real-world applications can be nat- urally represented by multi-view networks where the different views encode different types of rela- tionships (e.g., friendship, shared interests in mu- sic, etc.) between real-world individuals or enti- ties. There is an urgent need for methods to ob- tain low-dimensional, information preserving and typically nonlinear embeddings of such multi-view networks. However, most of the work on multi- view learning focuses on data that lack a net- work structure, and most of the work on net- work embeddings has focused primarily on single- view networks. Against this background, we con- sider the multi-view network representation learn- ing problem, i.e., the problem of constructing low- dimensional information preserving embeddings of multi-view networks. Specifically, we investigate a novel Generative Adversarial Network (GAN) framework for Multi-View Network Embedding, namely MEGAN, aimed at preserving the informa- tion from the individual network views, while ac- counting for connectivity across (and hence com- plementarity of and correlations between) differ- ent views. The results of our experiments on two real-world multi-view data sets show that the em- beddings obtained using MEGAN outperform the state-of-the-art methods on node classification, link prediction and visualization tasks. 
    more » « less
  5. Network embedding has become the cornerstone of a variety of mining tasks, such as classification, link prediction, clustering, anomaly detection and many more, thanks to its superior ability to encode the intrinsic network characteristics in a compact low-dimensional space. Most of the existing methods focus on a single network and/or a single resolution, which generate embeddings of different network objects (node/subgraph/network) from different networks separately. A fundamental limitation with such methods is that the intrinsic relationship across different networks (e.g., two networks share same or similar subgraphs) and that across different resolutions (e.g., the node-subgraph membership) are ignored, resulting in disparate embeddings. Consequentially, it leads to sub-optimal performance or even becomes inapplicable for some downstream mining tasks (e.g., role classification, network alignment. etc.). In this paper, we propose a unified framework MrMine to learn the representations of objects from multiple networks at three complementary resolutions (i.e., network, subgraph and node) simultaneously. The key idea is to construct the cross-resolution cross-network context for each object. The proposed method bears two distinctive features. First, it enables and/or boosts various multi-network downstream mining tasks by having embeddings at different resolutions from different networks in the same embedding space. Second, Our method is efficient and scalable, with a O(nlog(n)) time complexity for the base algorithm and a linear time complexity w.r.t. the number of nodes and edges of input networks for the accelerated version. Extensive experiments on real-world data show that our methods (1) are able to enable and enhance a variety of multi-network mining tasks, and (2) scale up to million-node networks. 
    more » « less