Abstract Sea‐ice loss and radiative feedbacks have been proposed to explain Arctic amplification (AA)—the enhanced Arctic warming under increased greenhouse gases, but their relationship is unclear. By analyzing coupled CESM1 simulations with 1%/year CO2increases, we show that without large sea‐ice loss and AA, the lapse rate, Planck, and surface albedo feedbacks are greatly reduced, while the positive water vapor feedback changes little. The positive Arctic lapse rate feedback, which results from enhanced surface warming rather than the high stability of Arctic air, and changes in atmospheric energy transport across the Arctic Circle are a result, not a cause, of AA; while the water vapor feedback also plays a minor role. Instead, AA results from enhanced winter oceanic heating associated with sea‐ice loss that is aided by a positive surface albedo feedback in summer and positive cloud feedback in winter.
more »
« less
Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback
Abstract Arctic amplification of anthropogenic climate change is widely attributed to the sea-ice albedo feedback, with its attendant increase in absorbed solar radiation, and to the effect of the vertical structure of atmospheric warming on Earth’s outgoing longwave radiation. The latter lapse rate feedback is subject, at high latitudes, to a myriad of local and remote influences whose relative contributions remain unquantified. The distinct controls on the high-latitude lapse rate feedback are here partitioned into “upper” and “lower” contributions originating above and below a characteristic climatological isentropic surface that separates the high-latitude lower troposphere from the rest of the atmosphere. This decomposition clarifies how the positive high-latitude lapse rate feedback over polar oceans arises primarily as an atmospheric response to local sea ice loss and is reduced in subpolar latitudes by an increase in poleward atmospheric energy transport. The separation of the locally driven component of the high-latitude lapse rate feedback further reveals how it and the sea-ice albedo feedback together dominate Arctic amplification as a coupled mechanism operating across the seasonal cycle.
more »
« less
- Award ID(s):
- 1753034
- PAR ID:
- 10198790
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- npj Climate and Atmospheric Science
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2397-3722
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mid-latitude clouds contribute to Arctic amplification via interactions with other climate feedbacksAbstract Traditional feedback analyses, which assume that individual climate feedback mechanisms act independently and add linearly, suggest that clouds do not contribute to Arctic amplification. However, feedback locking experiments, in which the cloud feedback is disabled, suggest that clouds, particularly outside of the Arctic, do contribute to Arctic amplification. Here, we reconcile these two perspectives by introducing a framework that quantifies the interactions between radiative feedbacks, radiative forcing, ocean heat uptake, and atmospheric heat transport. We show that including the cloud feedback in a comprehensive climate model can result in Arctic amplification because of interactions with other radiative feedbacks. The surface temperature change associated with including the cloud feedback is amplified in the Arctic by the surface-albedo, Planck, and lapse-rate feedbacks. A moist energy balance model with a locked cloud feedback exhibits similar behavior as the comprehensive climate model with a disabled cloud feedback and further indicates that the mid-latitude cloud feedback contributes to Arctic amplification via feedback interactions. Feedback locking in the moist energy balance model also suggests that the mid-latitude cloud feedback contributes substantially to the intermodel spread in Arctic amplification across comprehensive climate models. These results imply that constraining the mid-latitude cloud feedback will greatly reduce the intermodel spread in Arctic amplification. Furthermore, these results highlight a previously unrecognized non-local pathway for Arctic amplification.more » « less
-
Abstract Arctic amplification has been attributed predominantly to a positive lapse rate feedback in winter, when boundary layer temperature inversions focus warming near the surface. Predicting high-latitude climate change effectively thus requires identifying the local and remote physical processes that set the Arctic’s vertical warming structure. In this study, we analyze output from the CESM Large Ensemble’s twenty-first-century climate change projection to diagnose the relative influence of two Arctic heating sources, local sea ice loss and remote changes in atmospheric heat transport. Causal effects are quantified with a statistical inference method, allowing us to assess the energetic pathways mediating the Arctic temperature response and the role of internal variability across the ensemble. We find that a step-increase in latent heat flux convergence causes Arctic lower-tropospheric warming in all seasons, while additionally reducing net longwave cooling at the surface. However, these effects only lead to small and short-lived changes in boundary layer inversion strength. By contrast, a step-decrease in sea ice extent in the melt season causes, in fall and winter, surface-amplified warming and weakened boundary layer temperature inversions. Sea ice loss also enhances surface turbulent heat fluxes and cloud-driven condensational heating, which mediate the atmospheric temperature response. While the aggregate effect of many moist transport events and seasons of sea ice loss will be different than the response to hypothetical perturbations, our results nonetheless highlight the mechanisms that alter the Arctic temperature inversion in response to CO2forcing. As sea ice declines, the atmosphere’s boundary layer temperature structure is weakened, static stability decreases, and a thermodynamic coupling emerges between the Arctic surface and the overlying troposphere.more » « less
-
Abstract In contrast to surface greenhouse warming, surface greenhouse cooling has been less explored, especially on multi-century timescales. Here, we assess the processes controlling the pacing and magnitude of the multi-century surface temperature response to instantaneously doubling and halving atmospheric carbon dioxide concentrations in a modern global coupled climate model. Over the first decades, surface greenhouse warming is larger and faster than surface greenhouse cooling both globally and at high northern latitudes (45–90° N). Yet, this initial multi-decadal response difference does not persist. After year 150, additional surface warming is negligible, but surface cooling and sea ice expansion continues. Notably, the equilibration timescale for high northern latitude surface cooling (∼437 years) is more than double the equivalent timescale for warming. The high northern latitude responses differ most at the sea ice edge. Under greenhouse cooling, the sea ice edge slowly creeps southward into the mid-latitude oceans amplified by positive lapse rate and surface albedo feedbacks. While greenhouse warming and sea ice loss at high northern latitudes occurs on multi-decadal timescales, greenhouse cooling and sea ice expansion occurs on multi-century timescales. Overall, this work shows the importance of multi-century timescales and sea ice processes for understanding high northern latitude climate responses.more » « less
-
Abstract Radiative climate feedbacks in the Arctic have been extensively studied, but their spatial and seasonal variations have not been thoroughly examined. Using ERA5 reanalysis data, we examine seasonal variations in Arctic climate feedbacks and their relationship to sea‐ice loss based on changes from 1950–1979 to 1990–2019. The spring and summer seasons experienced large sea‐ice loss, strong surface albedo feedback, and large oceanic heat uptake. Arctic clouds exerted small net cooling in May‐June‐July but moderate warming during the cold season, especially over areas with large sea‐ice loss where cloud liquid and ice water content increased. Arctic water vapor feedback peaked in summer but was weak and uncorrelated with sea‐ice loss. Arctic positive lapse rate feedback (LRF) was strongest in winter over areas with large sea‐ice loss and weak inversion but uncorrelated with atmospheric stability, suggesting that oceanic heating from sea‐ice loss led to enhanced surface warming and the positive LRF.more » « less
An official website of the United States government
