skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: G2SAT: Learning to Generate SAT Formulas
The Boolean Satisfiability (SAT) problem is the canonical NP-complete problem and is fundamental to computer science, with a wide array of applications in planning, verification, and theorem proving. Developing and evaluating practical SAT solvers relies on extensive empirical testing on a set of real-world benchmark formulas. However, the availability of such real-world SAT formulas is limited. While these benchmark formulas can be augmented with synthetically generated ones, existing approaches for doing so are heavily hand-crafted and fail to simultaneously capture a wide range of characteristics exhibited by real-world SAT instances. In this work, we present G2SAT, the first deep generative framework that learns to generate SAT formulas from a given set of input formulas. Our key insight is that SAT formulas can be transformed into latent bipartite graph representations which we model using a specialized deep generative neural network. We show that G2SAT can generate SAT formulas that closely resemble given real-world SAT instances, as measured by both graph metrics and SAT solver behavior. Further, we show that our synthetic SAT formulas could be used to improve SAT solver performance on real-world benchmarks, which opens up new opportunities for the continued development of SAT solvers and a deeper understanding of their performance.  more » « less
Award ID(s):
1835598
PAR ID:
10198846
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Advances in neural information processing systems
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In 2006, Biere, Jussila, and Sinz made the key observation that the underlying logic behind algorithms for constructing Reduced, Ordered Binary Decision Diagrams (BDDs) can be encoded as steps in a proof in the extended resolution logical framework. Through this, a BDD-based Boolean satisfiability (SAT) solver can generate a checkable proof of unsatisfiability. Such a proof indicates that the formula is truly unsatisfiable without requiring the user to trust the BDD package or the SAT solver built on top of it. We extend their work to enable arbitrary existential quantification of the formula variables, a critical capability for BDD-based SAT solvers. We demonstrate the utility of this approach by applying a BDD-based solver, implemented by extending an existing BDD package, to several challenging Boolean satisfiability problems. Our results demonstrate scaling for parity formulas as well as the Urquhart, mutilated chessboard, and pigeonhole problems far beyond that of other proof-generating SAT solvers. 
    more » « less
  2. Satisfiability (SAT) solvers have been using the same input format for decades: a formula in conjunctive normal form. Cardinality constraints appear frequently in problem descriptions: over 64% of the SAT Competition formulas contain at least one cardinality constraint, while over 17% contain many large cardinality constraints. Allowing general cardinality constraints as input would simplify encodings and enable the solver to handle constraints natively or to encode them using different (and possibly dynamically changing) clausal forms. We modify the modern SAT solver CaDiCaL to handle cardinality constraints natively. Unlike the stronger cardinality reasoning in pseudo-Boolean (PB) or other systems, our incremental approach with cardinality-based propagation requires only moderate changes to a SAT solver, preserves the ability to run important inprocessing techniques, and is easily combined with existing proof-producing and validation tools. Our experimental evaluation on SAT Competition formulas shows our solver configurations with cardinality support consistently outperform other SAT and PB solvers. 
    more » « less
  3. Fisman, D.; Rosu, G. (Ed.)
    When augmented with a Pseudo-Boolean (PB) solver, a Boolean satisfiability (SAT) solver can apply apply powerful reasoning methods to determine when a set of parity or cardinality constraints, extracted from the clauses of the input formula, has no solution. By converting the intermediate constraints generated by the PB solver into ordered binary decision diagrams (BDDs), a proof-generating, BDD-based SAT solver can then produce a clausal proof that the input formula is unsatisfiable. Working together, the two solvers can generate proofs of unsatisfiability for problems that are intractable for other proof-generating SAT solvers. The PB solver can, at times, detect that the proof can exploit modular arithmetic to give smaller BDD representations and therefore shorter proofs. 
    more » « less
  4. Satisfaction-Driven Clause Learning (SDCL) is a recent SAT solving paradigm that aggressively trims the search space of possible truth assignments. To determine if the SAT solver is currently exploring a dispensable part of the search space, SDCL uses the so-called positive reduct of a formula: The positive reduct is an easily solvable propositional formula that is satisfiable if the current assignment of the solver can be safely pruned from the search space. In this paper, we present two novel variants of the positive reduct that allow for even more aggressive pruning. Using one of these variants allows SDCL to solve harder problems, in particular the well-known Tseitin formulas and mutilated chessboard problems. For the first time, we are able to generate and automatically check clausal proofs for large instances of these problems. 
    more » « less
  5. null (Ed.)
    The Multi-Agent Path Finding (MAPF) problem arises in many real-world applications, ranging from automated warehousing to multi-drone delivery. Solving the MAPF problem optimally is NP-hard, and existing optimal and bounded-suboptimal MAPF solvers thus usually do not scale to large MAPF instances. Greedy MAPF solvers scale to large MAPF instances, but their solution qualities are often bad. In this paper, we therefore propose a novel MAPF solver, Hierarchical Multi-Agent Path Planner (HMAPP), which creates a spatial hierarchy by partitioning the environment into multiple regions and decomposes a MAPF instance into smaller MAPF sub-instances for each region. For each sub-instance, it uses a bounded-suboptimal MAPF solver to solve it with good solution quality. Our experimental results show that HMAPP solves as large MAPF instances as greedy MAPF solvers while achieving better solution qualities on various maps. 
    more » « less