skip to main content


Title: A Hierarchical Approach to Multi-Agent Path Finding
The Multi-Agent Path Finding (MAPF) problem arises in many real-world applications, ranging from automated warehousing to multi-drone delivery. Solving the MAPF problem optimally is NP-hard, and existing optimal and bounded-suboptimal MAPF solvers thus usually do not scale to large MAPF instances. Greedy MAPF solvers scale to large MAPF instances, but their solution qualities are often bad. In this paper, we therefore propose a novel MAPF solver, Hierarchical Multi-Agent Path Planner (HMAPP), which creates a spatial hierarchy by partitioning the environment into multiple regions and decomposes a MAPF instance into smaller MAPF sub-instances for each region. For each sub-instance, it uses a bounded-suboptimal MAPF solver to solve it with good solution quality. Our experimental results show that HMAPP solves as large MAPF instances as greedy MAPF solvers while achieving better solution qualities on various maps.  more » « less
Award ID(s):
1837779
NSF-PAR ID:
10296533
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
International Symposium on Combinatorial Search
Page Range / eLocation ID:
209-211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-Agent Path Finding (MAPF) problems are traditionally solved in a centralized manner. There are works focusing on completeness, optimality, performance, or a tradeoff between them. However, there are only a few works based on spatial distribution. In this paper, we introduce ros-dmapf, a distributed MAPF solver. It consists of multiple MAPF sub-solvers, which---besides solving their assigned sub-problems---interact with each other to solve a given MAPF problem. In the current implementation, the sub-solvers are answer set planning systems for multiple agents, and are created based on spatial distribution of the problem. Interactions between components of ros-dmapf are facilitated by the Robot Operating System (ROS). The highlights of ros-dmapf are its scalability and a high degree of parallelism. We empirically evaluate ros-dmapf using the move-only domain of the asprilo system and results suggest that ros-dmapf scales up well. For instance, ros-dmapf gives a solution of length around 600 for a MAPF problem with 2000 robots in randomly generated 100×100 obstacle-free maps---a problem beyond the capability of a single sub-solver---within 7 minutes on a consumer laptop. We also evaluate ros-dmapf against some other MAPF solvers and results show that the system performs well. We also discuss possible improvements for future work. 
    more » « less
  2. Andrei Ciortea ; Mehdi Dastani ; Jieting Luo (Ed.)
    The Multi-Agent Path Finding (MAPF) is a problem of finding a plan for agents to reach their desired locations without colliding. Distributed Multi-Agent Path Finder (DMAPF) solves the MAPF problem by decomposing a given MAPF problem instance into smaller subproblems and solve them in parallel. DMAPF works in rounds. Between two consecutive rounds, agents may migrate between two adjacent subproblems following their abstract plans, which are pre-computed, until all of them reach the areas that contain their desired locations. Previous works on DMAPF compute an abstract plan for each agent without the knowledge of other agents’ abstract plans, resulting in high congestion in some areas, especially those that act as corridors. The congestion negatively impacts the runtime of DMAPF and prevents it from being able to solve dense MAPF problems. In this paper, we (i) investigate the use of Uniform-Cost Search to mitigate the congestion. Additionally, we explore the use of several other techniques including (ii) using timeout estimation to preemptively stop solving and relax a subproblem when it is likely to get stuck; (iii) allowing a solving process to manage multiple subproblems – aimed to increase concurrency; and (iv) integrating with MAPF solvers from the Conflict-Based Search family. Experimental results show that our new system is several times faster than the previous ones; can solve larger and denser problems that were unsolvable before; and has better runtime than PBS and EECBS, which are state-of-the-art centralized suboptimal MAPF solvers, in problems with a large number of agents. 
    more » « less
  3. Multi-Agent Path Finding (MAPF) is the problem of moving a team of agents from their start locations to their goal locations without collisions. We study the lifelong variant of MAPF where agents are constantly engaged with new goal locations, such as in warehouses. We propose a new framework for solving lifelong MAPF by decomposing the problem into a sequence of Windowed MAPF instances, where a Windowed MAPF solver resolves collisions among the paths of agents only within a finite time horizon and ignores collisions beyond it. Our framework is particularly well suited to generating pliable plans that adapt to continually arriving new goal locations. We evaluate our framework with a variety of MAPF solvers and show that it can produce high-quality solutions for up to 1,000 agents, significantly outperforming existing methods. 
    more » « less
  4. In this paper, we adopt a new perspective on the Multi-Agent Path Finding (MAPF) problem and view it as a Constraint Satisfaction Problem (CSP). A variable corresponds to an agent, its domain is the set of all paths from the start vertex to the goal vertex of the agent, and the constraints allow only conflict-free paths for each pair of agents. Although the domains and constraints are only implicitly defined, this new CSP perspective allows us to use successful techniques from CSP search. With the concomitant idea of using matrix computations for calculating the size of the reduced domain of an uninstantiated variable, we apply Dynamic Variable Ordering and Rapid Random Restarts to the MAPF problem. In our experiments, the resulting simple polynomial-time MAPF solver, called Matrix MAPF solver, either outperforms or matches the performance of many state-of-the-art solvers for the MAPF problem and its variants. 
    more » « less
  5. null (Ed.)
    Multi-Agent Path Finding (MAPF), i.e., finding collision-free paths for multiple robots, is important for many applications where small runtimes are necessary, including the kind of automated warehouses operated by Amazon. CBS is a lead- ing two-level search algorithm for solving MAPF optimally. ECBS is a bounded-suboptimal variant of CBS that uses focal search to speed up CBS by sacrificing optimality and instead guaranteeing that the costs of its solutions are within a given factor of optimal. In this paper, we study how to decrease its runtime even further using inadmissible heuristics. Motivated by Explicit Estimation Search (EES), we propose Explicit Estimation CBS (EECBS), a new bounded-suboptimal variant of CBS, that uses online learning to obtain inadmissible estimates of the cost of the solution of each high-level node and uses EES to choose which high-level node to expand next. We also investigate recent improvements of CBS and adapt them to EECBS. We find that EECBS with the improvements runs significantly faster than the state-of-the-art bounded-suboptimal MAPF algorithms ECBS, BCP-7, and eMDD-SAT on a variety of MAPF instances. We hope that the scalability of EECBS enables additional applications for bounded-suboptimal MAPF algorithms. 
    more » « less