skip to main content

Title: Comparing rates of introgression in parasitic feather lice with differing dispersal capabilities

Organisms vary in their dispersal abilities, and these differences can have important biological consequences, such as impacting the likelihood of hybridization events. However, there is still much to learn about the factors influencing hybridization, and specifically how dispersal ability affects the opportunities for hybridization. Here, using the ecological replicate system of dove wing and body lice (Insecta: Phthiraptera), we show that species with higher dispersal abilities exhibited increased genomic signatures of introgression. Specifically, we found a higher proportion of introgressed genomic reads and more reticulated phylogenetic networks in wing lice, the louse group with higher dispersal abilities. Our results are consistent with the hypothesis that differences in dispersal ability might drive the extent of introgression through hybridization.

; ;
Award ID(s):
1925487 1855812
Publication Date:
Journal Name:
Communications Biology
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polyphenism allows organisms to respond to varying environmental conditions by adopting alternative collections of morphological traits, often leading to different reproductive strategies. In many insects, polyphenism affecting the development of flight trades dispersal ability for increased fecundity. The soapberry bug Jadera haematoloma (Hemiptera: Rhopalidae) exhibits wing polyphenism in response to juvenile nutritional resources and cohort density. Development of full-length wings and flight-capable thoracic muscles occurs more frequently in cohorts raised under low food density conditions, and these features are correlated to reduced female fecundity. Soapberry bugs represent an example of polyphenic dispersal-fecundity trade-off. Short-wing development is not sex-limited, and morphs can also differ in male fertility. We have previously shown, via a candidate gene approach, that manipulation of insulin signaling can alter the threshold for nutritional response and that changes in the activity of this pathway underlie, at least in part, differences in the polyphenic thresholds in different host-adapted populations of J. haematoloma. We now expand the examination of this system using transcriptome sequencing across a multidimensional matrix of life stage, tissue, sex, food density, and host population. We also examine the use of wing and thorax shape as factors modeling gene expression. In addition to insulin signaling, wemore »find that components of the TOR, Hippo, Toll, and estrogen-related receptor pathways are differentially expressed in the thorax of polyphenic morphs. The transcription factor Sox14 was one of the few genes differentially expressed in the gonads of morphs, being up-regulated in ovaries. We identify two transcription factors as potential mediators of morph-specific male fertility differences. We also find that bugs respond to nutrient limitation with expression of genes linked to cuticle structure and spermatogenesis. These findings provide a broad perspective from which to view this nutrition-dependent polyphenism.

    « less

    Variation in dispersal ability among taxa affects community assembly and biodiversity maintenance within metacommunities. Although fungi and bacteria frequently coexist, their relative dispersal abilities are poorly understood. Nectar-inhabiting microbial communities affect plant reproduction and pollinator behavior, and are excellent models for studying dispersal of bacteria and fungi in a metacommunity framework. Here, we assay dispersal ability of common nectar bacteria and fungi in an insect-based dispersal experiment. We then compare these results with the incidence and abundance of culturable flower-inhabiting bacteria and fungi within naturally occurring flowers across two coflowering communities in California across two flowering seasons. Our microbial dispersal experiment demonstrates that bacteria disperse via thrips among artificial habitat patches more readily than fungi. In the field, incidence and abundance of culturable bacteria and fungi were positively correlated, but bacteria were much more widespread. These patterns suggest shared dispersal routes or habitat requirements among culturable bacteria and fungi, but differences in dispersal or colonization frequency by thrips, common flower visitors. The finding that culturable bacteria are more common among nectar sampled here, in part due to superior thrips-mediated dispersal, may have relevance for microbial life history, community assembly of microbes, and plant–pollinator interactions.

  3. Abstract

    Uncovering whether convergent adaptations share a genetic basis is consequential for understanding the evolution of phenotypic diversity. This information can help us understand the extent to which shared ancestry or independent evolution shape adaptive phenotypes. In this study, we first ask whether the same genes underlie polymorphic mimicry inPapilioswallowtail butterflies. By comparing signatures of genetic variation between polymorphic and monomorphic species, we then investigate how ancestral variation, hybridization, and independent evolution contributed to wing pattern diversity in this group. We report that a single gene,doublesex (dsx), controls mimicry across multiple taxa, but with species-specific patterns of genetic differentiation and linkage disequilibrium. In contrast to widespread examples of phenotypic evolution driven by introgression, our analyses reveal distinct mimicry alleles. We conclude that mimicry evolution in this group was likely facilitated by ancestral polymorphism resulting from early co-option ofdsxas a mimicry locus, and that evolutionary turnover ofdsxalleles may underlie the wing pattern diversity of extant polymorphic and monomorphic lineages.

  4. Abstract Background Heliconius butterflies are widely distributed across the Neotropics and have evolved a stunning array of wing color patterns that mediate Müllerian mimicry and mating behavior. Their rapid radiation has been strongly influenced by hybridization, which has created new species and allowed sharing of color patterning alleles between mimetic species pairs. While these processes have frequently been observed in widespread species with contiguous distributions, many Heliconius species inhabit patchy or rare habitats that may strongly influence the origin and spread of species and color patterns. Here, we assess the effects of historical population fragmentation and unique biology on the origins, genetic health, and color pattern evolution of two rare and sparsely distributed Brazilian butterflies, Heliconius hermathena and Heliconius nattereri . Results We assembled genomes and re-sequenced whole genomes of eight H. nattereri and 71 H. hermathena individuals. These species harbor little genetic diversity, skewed site frequency spectra, and high deleterious mutation loads consistent with recent population bottlenecks. Heliconius hermathena consists of discrete, strongly isolated populations that likely arose from a single population that dispersed after the last glacial maximum. Despite having a unique color pattern combination that suggested a hybrid origin, we found no genome-wide evidence that H. hermathenamore »is a hybrid species. However, H. hermathena mimicry evolved via introgression, from co-mimetic Heliconius erato , of a small genomic region upstream of the color patterning gene cortex . Conclusions Heliconius hermathena and H. nattereri population fragmentation, potentially driven by historical climate change and recent deforestation, has significantly reduced the genetic health of these rare species. Our results contribute to a growing body of evidence that introgression of color patterning alleles between co-mimetic species appears to be a general feature of Heliconius evolution.« less
  5. Abstract

    Northern Hemisphere forests changed drastically in the early Eocene with the diversification of the oak family (Fagaceae). Cooling climates over the next 20 million years fostered the spread of temperate biomes that became increasingly dominated by oaks and their chestnut relatives. Here we use phylogenomic analyses of nuclear and plastid genomes to investigate the timing and pattern of major macroevolutionary events and ancient genome-wide signatures of hybridization across Fagaceae. Innovation related to seed dispersal is implicated in triggering waves of continental radiations beginning with the rapid diversification of major lineages and resulting in unparalleled transformation of forest dynamics within 15 million years following the K-Pg extinction. We detect introgression at multiple time scales, including ancient events predating the origination of genus-level diversity. As oak lineages moved into newly available temperate habitats in the early Miocene, secondary contact between previously isolated species occurred. This resulted in adaptive introgression, which may have further amplified the diversification of white oaks across Eurasia.