skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SiPhyNetwork : An R package for simulating phylogenetic networks
Abstract Gene flow is increasingly recognized as an important macroevolutionary process. The many mechanisms that contribute to gene flow (e.g. introgression, hybridization, lateral gene transfer) uniquely affect the diversification of dynamics of species, making it important to be able to account for these idiosyncrasies when constructing phylogenetic models. Existing phylogenetic‐network simulators for macroevolution are limited in the ways they model gene flow.We presentSiPhyNetwork, an R package for simulating phylogenetic networks under a birth–death‐hybridization process.Our package unifies the existing birth–death‐hybridization models while also extending the toolkit for modelling gene flow. This tool can create patterns of reticulation such as hybridization, lateral gene transfer, and introgression.Specifically, we model different reticulate events by allowing events to either add, remove or keep constant the number of lineages. Additionally, we allow reticulation events to be trait dependent, creating the ability to model the expanse of isolating mechanisms that prevent gene flow. This tool makes it possible for researchers to model many of the complex biological factors associated with gene flow in a phylogenetic context.  more » « less
Award ID(s):
2144367
PAR ID:
10413317
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
14
Issue:
7
ISSN:
2041-210X
Page Range / eLocation ID:
p. 1687-1698
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ThePCMBase Rpackage is a powerful computational tool that enables efficient calculations of likelihoods for a wide range of phylogenetic Gaussian models.Taking advantage of it, we redesigned theRpackagemvSLOUCH.Here, we demonstrate how the new version of the package can be used to thoroughly examine the evolution and adaptation of traits in a large dataset of 1252 vascular plants through the use of multivariate Ornstein–Uhlenbeck processes.The results of our analysis demonstrate the ability of the modelling framework to distinguish between various alternative hypotheses regarding the evolution of functional traits in angiosperms. 
    more » « less
  2. Abstract Phylogenetic networks can represent evolutionary events that cannot be described by phylogenetic trees. These networks are able to incorporate reticulate evolutionary events such as hybridization, introgression, and lateral gene transfer. Recently, network-based Markov models of DNA sequence evolution have been introduced along with model-based methods for reconstructing phylogenetic networks. For these methods to be consistent, the network parameter needs to be identifiable from data generated under the model. Here, we show that the semi-directed network parameter of a triangle-free, level-1 network model with any fixed number of reticulation vertices is generically identifiable under the Jukes–Cantor, Kimura 2-parameter, or Kimura 3-parameter constraints. 
    more » « less
  3. Abstract Many important demographic processes are seasonal, including survival. For many species, mortality risk is significantly higher at certain times of the year than at others, whether because resources are scarce, susceptibility to predators or disease is high, or both. Despite the importance of survival modelling in wildlife sciences, no tools are available to estimate the peak, duration and relative importance of these ‘seasons of mortality’.We presentcyclomort, anrpackage that estimates the timing, duration and intensity of any number of mortality seasons with reliable confidence intervals. The package includes a model selection approach to determine the number of mortality seasons and to test whether seasons of mortality vary across discrete grouping factors.We illustrate the periodic hazard function model and workflow of cyclomort with simulated data. We then estimate mortality seasons of two caribouRangifer taranduspopulations that have strikingly different mortality patterns, including different numbers and timing of mortality peaks, and a marked change in one population over time.Thecyclomortpackage was developed to estimate mortality seasons for wildlife, but the package can model any time‐to‐event processes with a periodic component. 
    more » « less
  4. Abstract Geometric morphometric (GM) tools are essential for meaningfully quantifying and understanding patterns of variation in complex traits like shape. In this field, the breadth of answerable questions has grown dramatically in recent years through the development of new analyses and increased computational efficiency.In this note, we describe the ways in whichgeomorph, a widely usedRpackage for quantifying and analysing GM data, has grown with the field.We presentgeomorph v4.0and describe the ways in which this version has dramatically improved upon previous versions. We also present a new graphical user interface for easy implementation,gmShiny.These contributions positiongeomorphto be the primary tool for GM analyses, particularly those employing a phylogenetic comparative approach. 
    more » « less
  5. Abstract The evolutionary implications and frequency of hybridization and introgression are increasingly being recognized across the tree of life. To detect hybridization from multi-locus and genome-wide sequence data, a popular class of methods are based on summary statistics from subsets of 3 or 4 taxa. However, these methods often carry the assumption of a constant substitution rate across lineages and genes, which is commonly violated in many groups. In this work, we quantify the effects of rate variation on the D test (also known as ABBA–BABA test), the D3 test, and HyDe. All 3 tests are used widely across a range of taxonomic groups, in part because they are very fast to compute. We consider rate variation across species lineages, across genes, their lineage-by-gene interaction, and rate variation across gene-tree edges. We simulated species networks according to a birth–death-hybridization process, so as to capture a range of realistic species phylogenies. For all 3 methods tested, we found a marked increase in the false discovery of reticulation (type-1 error rate) when there is rate variation across species lineages. The D3 test was the most sensitive, with around 80% type-1 error, such that D3 appears to more sensitive to a departure from the clock than to the presence of reticulation. For all 3 tests, the power to detect hybridization events decreased as the number of hybridization events increased, indicating that multiple hybridization events can obscure one another if they occur within a small subset of taxa. Our study highlights the need to consider rate variation when using site-based summary statistics, and points to the advantages of methods that do not require assumptions on evolutionary rates across lineages or across genes. 
    more » « less