Abstract We present a novel methodology to generate mechanical structures based on fractal geometry using the chaos game, which generates self-similar point-sets within a polygon. Using the Voronoi decomposition of these points, we are able to generate groups of self-similar structures that can be related back to their chaos game parameters, namely, the polygonal domain, fractional distance, and number of samples. Our approach explores the use of forward design of generative structures, which in some cases can be easier to use for designing than inverse generative design techniques. To this end, the central hypothesis of our work is that structures generated using the chaos game can generate families of self-similar structures that, while not identical, exhibit similar mechanical behavior in a statistical sense. We present a systematic study of these self-similar structures through modal analysis and tensile loading and demonstrate a preliminary confirmation of our hypothesis.
more »
« less
CHAOS IV: Gas-phase Abundance Trends from the First Four CHAOS Galaxies
More Like this
-
-
A bstract Celestial holography proposes a duality between gravitational scattering in asymptotically flat space-time and a conformal field theory living on the celestial sphere. Its dictionary relates the infinite dimensional space-time symmetry group to Ward identities of the CFT. The spontaneous breaking of these asymptotic symmetries governs the dynamics of the soft sector in the CFT. Here we show that this sector encodes non-trivial backreaction effects that exhibit characteristics of maximal quantum chaos. A key element in the derivation is the identification of the Hilbert space of celestial CFT, defined through radial quantization, with that of a constantly accelerating Rindler observer. From the point of view of the bulk, Rindler particles exhibit Lyapunov behavior due to shockwave interactions that shift the observer horizon. From the point of view of the boundary, the superrotation Goldstone modes affect the relevant representations of the celestial Virasoro symmetry in a manner that induces Lyapunov behavior of out-of-time-ordered celestial correlators.more » « less
-
null (Ed.)It is well known that a quantum circuit on N qubits composed of Clifford gates with the addition of k non Clifford gates can be simulated on a classical computer by an algorithm scaling as poly ( N ) exp ( k ) \cite{bravyi2016improved}. We show that, for a quantum circuit to simulate quantum chaotic behavior, it is both necessary and sufficient that k = Θ ( N ) . This result implies the impossibility of simulating quantum chaos on a classical computer.more » « less