A bstract In celestial holography, four-dimensional scattering amplitudes are considered as two-dimensional conformal correlators of a putative two-dimensional celestial conformal field theory (CCFT). The simplest way of converting momentum space amplitudes into CCFT correlators is by taking their Mellin transforms with respect to light-cone energies. For massless particles, like gluons, however, such a construction leads to three-point and four-point correlators that vanish everywhere except for a measure zero hypersurface of celestial coordinates. This is due to the four-dimensional momentum conservation law that constrains the insertion points of the operators associated with massless particles. These correlators are reminiscent of Coulomb gas correlators that, in the absence of background charges, vanish due to charge conservation. We supply the background momentum by coupling Yang-Mills theory to a background dilaton field, with the (complex) dilaton source localized on the celestial sphere. This picture emerges from the physical interpretation of the solutions of the system of differential equations discovered by Banerjee and Ghosh. We show that the solutions can be written as Mellin transforms of the amplitudes evaluated in such a dilaton background. The resultant three-gluon and four-gluon amplitudes are single-valued functions of celestial coordinates enjoying crossing symmetry and all other properties expected from standard CFT correlators. We use them to extract OPEs and compare them with the OPEs extracted from multi-gluon celestial amplitudes without a dilaton background. We perform the conformal block decomposition of the four-gluon single-valued correlator and determine the dimensions, spin and group representations of the entire primary field spectrum of the Yang-Mills sector of CCFT.
more »
« less
Chaos in celestial CFT
A bstract Celestial holography proposes a duality between gravitational scattering in asymptotically flat space-time and a conformal field theory living on the celestial sphere. Its dictionary relates the infinite dimensional space-time symmetry group to Ward identities of the CFT. The spontaneous breaking of these asymptotic symmetries governs the dynamics of the soft sector in the CFT. Here we show that this sector encodes non-trivial backreaction effects that exhibit characteristics of maximal quantum chaos. A key element in the derivation is the identification of the Hilbert space of celestial CFT, defined through radial quantization, with that of a constantly accelerating Rindler observer. From the point of view of the bulk, Rindler particles exhibit Lyapunov behavior due to shockwave interactions that shift the observer horizon. From the point of view of the boundary, the superrotation Goldstone modes affect the relevant representations of the celestial Virasoro symmetry in a manner that induces Lyapunov behavior of out-of-time-ordered celestial correlators.
more »
« less
- Award ID(s):
- 1914860
- PAR ID:
- 10380988
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 8
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Carrollian holography is supposed to describe gravity in four-dimensional asymptotically flat space-time by the three-dimensional Carrollian CFT living at null infinity. We transform superstring scattering amplitudes into the correlation functions of primary fields of Carrollian CFT depending on the three-dimensional coordinates of the celestial sphere and a retarded time coordinate. The power series in the inverse string tension is converted to a whole tower of both UV and IR finite descendants of the underlying field-theoretical Carrollian amplitude. We focus on four-point amplitudes involving gauge bosons and gravitons in type I open superstring theory and in closed heterotic superstring theory at the tree-level. We also discuss the limit of infinite retarded time coordinates, where the string world-sheet becomes celestial.more » « less
-
A bstract The infrared behavior of gravity in 4D asymptotically flat spacetime exhibits a rich set of symmetries. This has led to a proposed holographic duality between the gravitational $$ \mathcal{S} $$ S -matrix and a dual field theory living on the celestial sphere. Most of our current understanding of the dictionary relies on knowledge of the 4D bulk. As such, identifying intrinsic 2D models that capture the correct symmetries and soft dynamics of 4D gravity is an active area of interest. Here we propose that a 2D generalization of SYK provides an instructive toy model for the soft limit of the gravitational sector in 4D asymptotically flat spacetime. We find that the symmetries and soft dynamics of the 2D SYK model capture the salient features of the celestial theory: exhibiting chaotic dynamics, conformal invariance, and a w 1+ ∞ symmetry. The holographic map from 2D SYK operators to the 4D bulk employs the Penrose twistor transform.more » « less
-
null (Ed.)A bstract New renormalisation group flows of three-dimensional Chern-Simons theories with a single gauge group SU( N ) and adjoint matter are found holographically. These RG flows have an infrared fixed point given by a CFT with $$ \mathcal{N} $$ N = 3 supersymmetry and SU(2) flavour symmetry. The ultraviolet fixed point is again described by a CFT with either $$ \mathcal{N} $$ N = 2 and SU(3) symmetry or $$ \mathcal{N} $$ N = 1 and G 2 symmetry. The gauge/gravity duals of these RG flows are constructed as domain-wall solutions of a gauged supergravity model in four dimensions that enjoys an embedding into massive IIA supergravity. A concrete RG flow that brings a mass deformation of the $$ \mathcal{N} $$ N = 2 CFT into the $$ \mathcal{N} $$ N = 3 CFT at low energies is described in detail.more » « less
-
null (Ed.)A bstract Multi-collinear factorization limits provide a window to study how locality and unitarity of scattering amplitudes can emerge dynamically from celestial CFT, the conjectured holographic dual to gauge and gravitational theories in flat space. To this end, we first use asymptotic symmetries to commence a systematic study of conformal and Kac-Moody descendants in the OPE of celestial gluons. Recursive application of these OPEs then equips us with a novel holographic method of computing the multi-collinear limits of gluon amplitudes. We perform this computation for some of the simplest helicity assignments of the collinear particles. The prediction from the OPE matches with Mellin transforms of the expressions in the literature to all orders in conformal descendants. In a similar vein, we conclude by studying multi-collinear limits of graviton amplitudes in the leading approximation of sequential double-collinear limits, again finding a consistency check against the leading order OPE of celestial gravitons.more » « less