skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Copolymerization of an aryl halide and elemental sulfur as a route to high sulfur content materials
High sulfur-content materials (HSMs) have been investigated for a plethora of applications owing to a combination of desirable properties and the low cost of waste sulfur as a starting monomer. Whereas extended sulfur catenates are unstable with respect to orthorhombic sulfur (S 8 rings) at STP, oligomeric/polymeric sulfur chains can be stabilized when they are confined in a supporting matrix. The vast majority of reported HSMs have been made by inverse vulcanization of sulfur and olefins. In the current case, a radical aryl halide–sulfur polymerization (RASP) route was employed to form an HSM ( XS81 ) by copolymerizing elemental sulfur with the xylenol derivative 2,4-dimethyl-3,5-dichlorophenol (DDP). XS81 is a composite of which 81 wt% is sulfur, wherein the sulfur is distributed between cross-linking chains averaging four sulfur atoms in length and trapped sulfur that is not covalently attached to the network. XS81 (flexural strength = 2.0 MPa) exhibits mechanical properties on par with other HSMs prepared by inverse vulcanization. Notably, XS81 retains mechanical integrity over many heat-recast cycles, making it a candidate for facile recyclability. This is the first report of an HSM comprising stabilized polymeric sulfur that has been successfully prepared from a small molecular comonomer by RASP. Preparation of XS81 thus demonstrates a new route to access HSMs using small molecular aryl halides, a notable expansion beyond the olefins required for the well-studied inverse vulcanization route to HSMs from small molecular comonomers.  more » « less
Award ID(s):
1708844
PAR ID:
10199243
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
11
Issue:
9
ISSN:
1759-9954
Page Range / eLocation ID:
1621 to 1628
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This report introduces a new approach to high sulfur-content materials. This route, RASP (radical-induced aryl halide/sulfur polymerization), expands the substrate scope beyond olefins required for the traditional inverse vulcanization route to such materials. RASP allows direct reaction of two unmodified industrial waste products to give lignin–sulfur composites. 
    more » « less
  2. High sulfur-content materials (HSMs) formed via inverse vulcanization of elemental sulfur with animal fats and/or plant oils can exhibit remarkable mechanical strength and chemical resistance, sometimes superior to commercial building products. Adding pozzolan fine materials—fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK)—can further improve HSM mechanical properties and stability. Herein, we detail nine materials comprised of rancidified chicken fat, elemental sulfur, and canola or sunflower oil (to yield CFS or GFS, respectively) and, with or without FA, SF, GGBFS, or MK. The base HSMs, CFS90 or GFS90, contained 90 wt% sulfur, 5 wt% chicken fat, and 5 wt% canola or sunflower oil, respectively. For each HSM/fine combination, the resulting material was prepared using a 95:5 mass input ratio of HSM/fine. No material exhibited water uptake >0.2 wt% after immersion in water for 24 h, significantly lower than the 28 wt% observed with ordinary Portland cement (OPC). Impressively, CFS90, GFS90, and all HSM/fine combinations exhibited compressive strength values 15% to 55% greater than OPC. After immersion in 0.5 M H2SO4, CFS90, GFS90, and its derivatives retained 90% to 171% of the initial strength of OPC, whereas OPC disintegrated under these conditions. CFS90, GFS90, and its derivatives collectively show promise as sustainable materials and materials with superior performance versus concrete. 
    more » « less
  3. Abstract This report details how sequential crosslinking processes can be applied to develop properties in sulfur‐bisphenol A composites. Olefinic carbons were first crosslinked by inverse vulcanization (InV) at 180°C and then aryl carbon crosslinking was affected via radical‐induced aryl halide‐sulfur polymerization (RASP) at 220°C. To demonstrate that these two crosslinking mechanisms are orthogonal and can be used to affect stepwise property changes,O,O′‐diallyl‐2,2′,5,5′‐tetrabromobisphenol A was selected as a comonomer. After InV of the monomer with 90 wt% sulfur, a flexible plastic material having an elongation at break of 89% was obtained, whereas after heating this premade polymer to initiate RASP, the polymer develops a threefold increase in its tensile strength and has an elongation at break of only 29%. The sequential crosslinking strategy demonstrated herein thus provides an innovative approach to tuning the properties of high sulfur‐content materials. 
    more » « less
  4. null (Ed.)
    Fossil fuel refining produces over 70 Mt of excess sulfur annually from for which there is currently no practical use. Recently, methods to convert waste sulfur to recyclable and biodegradable polymers have been delineated. In this report, a commercial bisphenol A (BPA) derivative, 2,2′,5,5′-tetrabromo(bisphenol A) (Br4BPA), is explored as a potential organic monomer for copolymerization with elemental sulfur by RASP (radical-induced aryl halide-sulfur polymerization). Resultant copolymers, BASx (x = wt% sulfur in the monomer feed, screened for values of 80, 85, 90, and 95) were characterized by thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. Analysis of early stage reaction products and depolymerization products support proposed S–Caryl bond formation and regiochemistry, while fractionation of BASx reveals a sulfur rank of 3–6. Copolymers having less organic cross-linker (5 or 10 wt%) in the monomer feed were thermoplastics, whereas thermosets were accomplished when 15 or 20 wt% of organic cross-linker was used. The flexural strengths of the thermally processable samples (>3.4 MPa and >4.7 for BAS95 and BAS90, respectively) were quite high compared to those of familiar building materials such as portland cement (3.7 MPa). Furthermore, copolymer BAS90 proved quite resistant to degradation by oxidizing organic acid, maintaining its full flexural strength after soaking in 0.5 M H2SO4 for 24 h. BAS90 could also be remelted and recast into shapes over many cycles without any loss of mechanical strength. This study on the effect of monomer ratio on properties of materials prepared by RASP of small molecular aryl halides confirms that highly cross-linked materials with varying physical and mechanical properties can be accessed by this protocol. This work is also an important step towards potentially upcycling BPA from plastic degradation and sulfur from fossil fuel refining. 
    more » « less
  5. null (Ed.)
    Lignocellulosic biomass holds a tremendous opportunity for transformation into carbon-negative materials, yet the expense of separating biomass into its cellulose and lignin components remains a primary economic barrier to biomass utilization. Herein is reported a simple procedure to convert several biomass-derived materials into robust, recyclable composites through their reaction with elemental sulfur by inverse vulcanization, a process in which olefins are crosslinked by sulfur chains. In an effort to understand the chemistry and the parameters leading to the strength of these composites, sulfur was reacted with four biomass-derivative comonomers: (1) unmodified peanut shell powder, (2) allyl peanut shells, (3) ‘mock’ allyl peanut shells (a mixture containing independently-prepared allyl cellulose and allyl lignin), or (4) peanut shells that have been defatted by extraction of peanut oil. The reactions of these materials with sulfur produce the biomass–sulfur composites PSx , APSx , mAPSx and dfPSx , respectively, where x = wt% sulfur in the monomer feed. The influence of biomass : sulfur ratio was assessed for PSx and APSx . Thermal/mechanical properties of composites were evaluated for comparison to commercial materials. Remarkably, unmodified peanut shell flour can simply be heated with elemental sulfur to produce composites having flexural/compressive strengths exceeding those of Portland cement, an effect traced to the presence of olefin-bearing peanut oil in the peanut shells. When allylated peanut shells are used in this process, a composite having twice the compressive strength of Portland cement is attained. 
    more » « less