skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lagrangian Perspective on the Origins of Denmark Strait Overflow
Abstract The Denmark Strait Overflow (DSO) is an important contributor to the lower limb of the Atlantic meridional overturning circulation (AMOC). Determining DSO formation and its pathways is not only important for local oceanography but also critical to estimating the state and variability of the AMOC. Despite prior attempts to understand the DSO sources, its upstream pathways and circulation remain uncertain due to short-term (3–5 days) variability. This makes it challenging to study the DSO from observations. Given this complexity, this study maps the upstream pathways and along-pathway changes in its water properties, using Lagrangian backtracking of the DSO sources in a realistic numerical ocean simulation. The Lagrangian pathways confirm that several branches contribute to the DSO from the north such as the East Greenland Current (EGC), the separated EGC (sEGC), and the North Icelandic Jet (NIJ). Moreover, the model results reveal additional pathways from south of Iceland, which supplied over 16% of the DSO annually and over 25% of the DSO during winter of 2008, when the NAO index was positive. The southern contribution is about 34% by the end of March. The southern pathways mark a more direct route from the near-surface subpolar North Atlantic to the North Atlantic Deep Water (NADW), and needs to be explored further, with in situ observations.  more » « less
Award ID(s):
1835640 1633124
PAR ID:
10199293
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Physical Oceanography
Volume:
50
Issue:
8
ISSN:
0022-3670
Page Range / eLocation ID:
2393 to 2414
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Lagrangian method—where current location and intensity are determined by tracking the movement of flow along its path—is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid‐20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice‐free oceans and begin to construct basin‐scale, and eventually global‐scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC. 
    more » « less
  2. Abstract The Lagrangian method—where current location and intensity are determined by tracking the movement of flow along its path—is the oldest technique for measuring the ocean circulation. For centuries, mariners used compilations of ship drift data to map out the location and intensity of surface currents along major shipping routes of the global ocean. In the mid‐20th century, technological advances in electronic navigation allowed oceanographers to continuously track freely drifting surface buoys throughout the ice‐free oceans and begin to construct basin‐scale, and eventually global‐scale, maps of the surface circulation. At about the same time, development of acoustic methods to track neutrally buoyant floats below the surface led to important new discoveries regarding the deep circulation. Since then, Lagrangian observing and modeling techniques have been used to explore the structure of the general circulation and its variability throughout the global ocean, but especially in the Atlantic Ocean. In this review, Lagrangian studies that focus on pathways of the upper and lower limbs of the Atlantic Meridional Overturning Circulation (AMOC), both observational and numerical, have been gathered together to illustrate aspects of the AMOC that are uniquely captured by this technique. These include the importance of horizontal recirculation gyres and interior (as opposed to boundary) pathways, the connectivity (or lack thereof) of the AMOC across latitudes, and the role of mesoscale eddies in some regions as the primary AMOC transport mechanism. There remain vast areas of the deep ocean where there are no direct observations of the pathways of the AMOC. 
    more » « less
  3. Abstract In contrast to the modern‐day climate, North Pacific deep water formation and a Pacific meridional overturning circulation (PMOC) may have been active during past climate conditions, in particular during the Pliocene epoch (some 3–5 million years ago). Here, we use a climate model simulation with a robust PMOC cell to investigate the pathways of the North Pacific deep water from subduction to upwelling, as revealed by Lagrangian particle trajectories. We find that similar to the present‐day Atlantic Meridional Overturning Circulation (AMOC), most subducted North Pacific deep water upwells in the Southern Ocean. However, roughly 15% upwells in the tropical Indo‐Pacific Oceans instead—a key feature distinguishing the PMOC from the AMOC. The connection to the Indian Ocean is relatively fast, at about 250 years. The connection to the tropical Pacific is slower (∼800 years) as water first travels to the subtropical South Pacific then gradually upwells through the thermocline. 
    more » « less
  4. null (Ed.)
    Using velocities from a state estimate, Lagrangian analysis maps the global routes of North Atlantic Deep Water (NADW) exiting the Atlantic and reentering the upper branch of the Atlantic Meridional Overturning Circulation (AMOC). Virtual particle trajectories followed for 8100 years highlight an upper route (32%) and a lower route (68%). The latter samples σ 2 > 37.07 and is further divided into subpolar (20%) and abyssal cells (48%). Particles in the abyssal cell detour into the abyssal North Pacific before upwelling in the Southern Ocean. NADW preferentially upwells north of 33°S (67%). Total diapycnal transformations are largest in the lower route but of comparable magnitudes in the upper route, challenging its previous characterization as “adiabatic.” Typical transit times are 300, 700, and 3600 years for the upper route, subpolar, and abyssal cells, respectively. The AMOC imports salinity into the Atlantic, indicating its potential instability to high-latitude freshwater perturbations. 
    more » « less
  5. Abstract Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re‐examine the traditional interpretation of pathways and property variability for the AMOC lower limb from the subpolar gyre to 26.5°N. In order to better understand these connections, Lagrangian experiments were conducted within an eddy‐rich ocean model to track upper North Atlantic Deep Water (uNADW), defined by density, between the OSNAP line and 26.5°N as well as within the Labrador Sea. The experiments reveal that 77% of uNADW at 26.5°N is directly advected from the OSNAP West section along the boundary current and interior pathways west of the Mid‐Atlantic Ridge. More precisely, the Labrador Sea is a main gateway for uNADW sourced from the Irminger Sea, while particles connecting OSNAP East to 26.5°N are exclusively advected from the Iceland Basin and Rockall Trough along the eastern flank of the Mid‐Atlantic Ridge. Although the pathways between OSNAP West and 26.5°N are only associated with a net formation of 1.1 Sv into the uNADW layer, they show large density changes within the layer. Similarly, as the particles transit through the Labrador Sea, they undergo substantial freshening and cooling that contributes to further densification within the uNADW layer. 
    more » « less