skip to main content

Title: Synthesis of terpyridine-containing polycarbonates with post polymerization providing water-soluble and micellar polymers and their metal complexes
Carbon dioxide based polymers synthesized from the metal-catalyzed copolymeriation of epoxides and CO 2 containing the terpyridine ligand as an end group are reported. The strategy used was to carry out the polymerization in the presence of a carboxylic acid derivative of terpyridine, 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine (HL), as a chain transfer agent. The epoxide monomer possessing a vinyl substituent, allyl glycidyl ether (AGE), was copolymerized with CO 2 employing a (salen)Co( iii ) catalyst to afford a polycarbonate which upon the addition of mercaptoacetic acid across the double bond, followed by deprotonation, yielded a water soluble polymer. In a similar manner, the sequential formation of a diblock terpolymer produced from propylene oxide, AGE, and CO 2 provided a amphiphilic polycarbonate which self-assembled upon addition to water to form micelle nanostructures. The molecular weights of these CO 2 -derived polycarbonates were shown to be easily controlled by the quantity of chain transfer agent used. These polymeric ligands were demonstrated to provide a modular design for synthesizing a wide variety of metal complexes as illustrated herein for zinc and platinum derivatives.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Polymer Chemistry
Page Range / eLocation ID:
4699 to 4705
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The synthesis, photophysics, and electrochemiluminescence (ECL) of four water-soluble dinuclear Ir( iii ) and Ru( ii ) complexes (1–4) terminally-capped by 4′-phenyl-2,2′:6′,2′′-terpyridine (tpy) or 1,3-di(pyrid-2-yl)-4,6-dimethylbenzene (N^C^N) ligands and linked by a 2,7-bis(2,2′:6′,2′′-terpyridyl)fluorene with oligoether chains on C9 are reported. The impact of the tpy or N^C^N ligands and metal centers on the photophysical properties of 1–4 was assessed by spectroscopic methods including UV-vis absorption, emission, and transient absorption, and by time-dependent density functional theory (TDDFT) calculations. These complexes exhibited distinct singlet and triplet excited-state properties upon variation of the terminal-capping terdentate ligands and the metal centers. The ECL properties of complexes 1–3 with better water solubility were investigated in neutral phosphate buffer solutions (PBS) by adding tripropylamine (TPA) as a co-reactant, and the observed ECL intensity followed the descending order of 3 > 1 > 2. Complex 3 bearing the [Ru(tpy) 2 ] 2+ units displayed more pronounced ECL signals, giving its analogues great potential for further ECL study. 
    more » « less
  2. Recent experimental and theoretical work has shown that sticker clustering can be used to enhance properties such as toughness and creep resistance of polymer networks. While it is clear that the changes in properties are related to a change in network topology, the mechanistic relationship is still not well understood. In this work, the effect of sticker clustering was investigated by comparing the dynamics of random copolymers with those where the stickers are clustered at the ends of the chain in the unentangled regime using both linear mechanics and diffusion measurements. Copolymers of N , N -dimethyl acrylamide (DMA) and pendant histidine groups were synthesized using reversible addition–fragmentation chain transfer (RAFT) polymerization. The clustered polymers were synthesized using a bifunctional RAFT agent, such that the midblock consisted of PDMA and the two end blocks were random copolymers of DMA and the histidine-functionalized monomer. Upon addition of Ni ions, transient metal-coordinate crosslinks are formed as histidine–Ni complexes. Combined studies of rheology, neutron scattering and self-diffusion measurements using forced Rayleigh scattering revealed changes to the network topology and stress relaxation modes. The network topology is proposed to consist of aggregates of the histidine–Ni complexes bridged by the non-associative midblock. Therefore, stress relaxation requires the cooperative dissociation of multiple bonds, resulting in increased relaxation times. The increased relaxation times, however, were accompanied by faster diffusion. This is attributed to the presence of defects such as elastically inactive chain loops. This study demonstrates that the effects of cooperative sticker dissociation can be observed even in the presence of a significant fraction of loop defects which are known to alter the nonlinear properties of conventional telechelic polymers. 
    more » « less
  3. The development of cost-effective, high-performance electrocatalysts for hydrogen evolution reaction (HER) is urgently needed. In the present study, a new type of HER catalyst was developed where ruthenium ions were embedded into the molecular skeletons of graphitic carbon nitride (C 3 N 4 ) nanosheets of 2.0 ± 0.4 nm in thickness by refluxing C 3 N 4 and RuCl 3 in water. This took advantage of the strong affinity of ruthenium ions to pyridinic nitrogen of the tri- s -triazine units of C 3 N 4 . The formation of C 3 N 4 –Ru nanocomposites was confirmed by optical and X-ray photoelectron spectroscopic measurements, which suggested charge transfer from the C 3 N 4 scaffold to the ruthenium centers. Significantly, the hybrid materials were readily dispersible in water and exhibited apparent electrocatalytic activity towards HER in acid and their activity increased with the loading of ruthenium metal centers in the C 3 N 4 matrix. Within the present experimental context, the sample saturated with ruthenium ion complexation at a ruthenium to pyridinic nitrogen atomic ratio of ca. 1 : 2 displayed the best performance, with an overpotential of only 140 mV to achieve the current density of 10 mA cm −2 , a low Tafel slope of 57 mV dec −1 , and a large exchange current density of 0.072 mA cm −2 . The activity was markedly lower when C 3 N 4 was embedded with other metal ions such as Fe 3+ , Co 3+ , Ni 3+ and Cu 2+ . This suggests minimal contributions from the C 3 N 4 nanosheets to the HER activity, and the activity was most likely due to the formation of Ru–N moieties where the synergistic interactions between the carbon nitride and ruthenium metal centers facilitated the adsorption of hydrogen. This was strongly supported by results from density functional theory calculations. 
    more » « less
  4. Herein, we present the direct modification of glucose, an abundant and inexpensive sugar molecule, to produce new sustainable and functional polymers. Glucose-6-acrylate-1,2,3,4-tetraacetate (GATA) has been synthesized and shown to provide a useful glassy component for developing an innovative family of elastomeric and adhesive materials. A series of diblock and triblock copolymers of GATA and n -butyl acrylate (n-BA) were created via Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization. Initially, poly(GATA)- b -poly(n-BA) copolymers were prepared using 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CEP) as a chain transfer agent (CTA). These diblock copolymers demonstrated decomposition temperatures of 275 °C or greater and two glass transition temperatures ( T g ) around −45 °C and 100 °C corresponding to the PnBA and PGATA domains, respectively, as measured by differential scanning calorimetry (DSC). Triblock copolymers of GATA and n-BA, with moderate dispersities ( Đ = 1.15–1.29), were successfully synthesized when S , S -dibenzyl trithiocarbonate (DTC) was employed as the CTA. Poly(GATA)- b -poly(nBA)- b -poly(GATA) copolymers with 14–58 wt% GATA were prepared and demonstrated excellent thermomechanical properties ( T d ≥ 279 °C). Two well-separated glass transitions near the values for homopolymers of n-BA and GATA (∼−45 °C and ∼100 °C, respectively) were measured by DSC. The triblock with 14% GATA exhibited peel adhesion of 2.31 N cm −1 (when mixed with 30 wt% tackifier) that is superior to many commercial pressure sensitive adhesives (PSAs). Use of 3,5-bis(2-dodecylthiocarbonothioylthio-1oxopropoxy)benzoic acid (BTCBA) as the CTA provided a more efficient route to copolymerize GATA and n-BA. Using BTCBA, poly(GATA)- b -poly(nBA)- b -poly(GATA) triblock copolymers containing 12–25 wt% GATA, with very narrow molar mass distributions ( Đ ≤ 1.08), were prepared. The latter series of triblock copolymers showed excellent thermal stability with T d ≥ 275 °C. Only the T g for the PnBA block was observed by DSC (∼−45 °C), however, phase-separation was confirmed by small-angle X-ray scattering (SAXS) for all of these triblock copolymers. The mechanical behavior of the polymers was investigated by tensile experiments and the triblock with 25% GATA content demonstrated moderate elastomeric properties, 573 kPa stress at break and 171% elongation. This study introduces a new family of glucose-based ABA-type copolymers and demonstrates functionality of a glucose-based feedstock for developing green polymeric materials. 
    more » « less
  5. This tutorial deals initially with a comparison of the mechanistic aspects of living and immortal polymerization processes. The living polymerization pathway originated with the anionic polymerization of styrene by Szwarc, whereas immortal polymerization was first described by Inoue for the homopolymerization of epoxides using an aluminum complex. A similar behavior would be anticipated for the copolymerization of epoxides and carbon dioxide catalyzed by well-defined metal complexes. The major difference between these two pathways is rapid and reversible chain transfer reactions involving protic impurities or additives in the latter case, that is, the stoichiometry of the monomer/initiator ratio changes as a function of the nature and concentration of the chain transfer agent (CTA). For instance, in early studies of the copolymerization of epoxides and CO 2 where adventitious water was present in the copolymerization reactions, there was little control of the molecular weight of the resulting copolymer product. Presently, the presence of chain transfer with protic CTAs during the copolymerization of epoxides and CO 2 is a major positive factor in this process's commercialization. Specifically, this represents an efficient production of polyols for the synthesis of CO 2 -based polyurethanes. Studies of the use of various CTAs in the synthesis of designer polymeric materials from CO 2 and epoxides are summarized herein. 
    more » « less