skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Connecting Main-Group Metals (Al, Ga, In) and Tungsten(0) Carbonyls via the N2S2 Metallo-Ligand Strategy
Tetradentate N2S2 ligands (such as bismercaptoethanediazacycloheptane in this study) have seen extensive use in combination with transition metals. Well-oriented N2S2 binding sites are ideal for d8 transition metals with square planar preferences, especially NiII, but also as a square pyramidal base for those metals with pentacoordinate preferences, such as [V≡O]2+, [Fe(NO)]2+, and [Co(NO)]2+. Further reactivity at the thiolate sulfurs generates diverse bi, tri, and tetra/heterometallic compounds. Few N2S2 ligands have been explored to investigate the possibility of binding to main group metals, especially group III (MIII) metals, and their utility as synthons for main group/transition metal bimetallic complexes. To open up this area of chemistry, we synthesized three new five-coordinate main group XMN2S2 complexes with methyl as the fifth binding ligand for M = Al, and chloride for M = Ga and In. The seven-membered diazacycle, dach, was engaged as a rigid stabilized connector between the terminal thiolate sulfurs. The pentacoordinate XMN2S2 complexes were characterized by 1H-NMR, 13C-NMR, +ESI-Mass spectra, and X-ray diffraction. Their stabilities and reactivities were probed by adding NiII sources and W(CO)5(THF). The former replaces the main group metals in all cases in the N2S2 coordination environment, demonstrating the weak coordinate bonds of MIII–N/S. The reaction of XMN2S2 (XM = ClGaIII or ClInIII) with the labile ligand W(0) complex W(CO)5(THF) resulted in Ga/In–W bimetallic complexes with a thiolate S-bridge. The synthesis of XMN2S2 complexes provide examples of MIII–S coordination, especially Al–S, which is relatively rare. The bimetallic Ga/In–S–W complex formation indicates that the nucleophilic ability of sulfur is retained in MIII–S–R, resulting in the ability of main group MIII–N2S2 complexes to serve as metalloligands.  more » « less
Award ID(s):
1665258
PAR ID:
10199348
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Inorganics
Volume:
7
Issue:
9
ISSN:
2304-6740
Page Range / eLocation ID:
115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 4‐ and 5‐coordinate zinc thiolate complexes supported either by bis(carboxamide)pyridine frameworks or by substituted tris(pyrazolyl)borate ligands react with elemental sulfur (S8) following two distinct pathways. Some zinc thiolate moieties insert sulfur atoms to form zinc polysulfanide complexes, while others reduce sulfur and oxidize the thiolate. Here, we compare the effects of ligand electronics, strain, and sterics for selecting the respective reaction pathway. These results show that chelating and electron‐deficient thiolate ligands better stabilize persistent zinc‐bound polysulfanide species. 
    more » « less
  2. Co( ii ) complexes of 1,4,7,10-tetraazacyclododecane (CYCLEN) or 1,4,8,11-tetraazacyclotetradecane (CYCLAM) with 2-hydroxypropyl or carbamoylmethyl (amide) pendants are studied with the goal of developing paramagnetic chemical exchange saturation transfer (paraCEST) agents. Single-crystal X-ray diffraction studies show that two of the coordination cations with hexadentate ligands, [Co(DHP)] 2+ and [Co(BABC)] 2+ , form six-coordinate complexes; whereas two CYCLEN-based complexes with potentially octadentate ligands, [Co(THP)] 2+ and [Co(HPAC)] 2+ , are seven-coordinate with only three of the four pendant groups bound to the metal center. 1 H NMR spectra of these complexes suggest that the six-coordinate complexes are present as a single isomer in aqueous solution. For the complexes which are seven-coordinate in the solid state, one is highly fluxional in aqueous solution on the NMR time scale ([Co(HPAC)] 2+ ), whereas the NMR spectrum of [Co(THP)] 2+ is consistent with an eight-coordinate complex with all pendants bound. Co( ii ) complexes of CYCLEN derivatives show CEST effects of low intensity that are assigned to NH or OH groups of the pendants. One complex, [Co(DHP)] 2+ , shows a highly-shifted CEST peak at 113 ppm versus bulk water, attributed to OH protons. However, the CEST effect is largest for two Co( ii ) CYCLAM-based complexes with coordinated amide groups that undergo NH proton exchange. All five complexes are inert towards dissociation in buffered solutions containing carbonate and phosphate and towards trans-metalation by excess Zn( ii ). These data give insight into the production of an intense CEST effect for tetraazamacrocyclic complexes with pendant groups containing NH or OH exchangeable protons. The intense and highly shifted CEST peak(s) of the CYCLAM-based complexes suggest that they are promising for further development as paraCEST agents. 
    more » « less
  3. Abstract Metal-metal contacts, though not yet widely realized, may provide exciting opportunities to serve as tunable and functional interfaces in single-molecule devices. One of the simplest components which might facilitate such binding interactions is the ferrocene group. Notably, direct bonds between the ferrocene iron center and metals such as Pd or Co have been demonstrated in molecular complexes comprising coordinating ligands attached to the cyclopentadienyl rings. Here, we demonstrate that ferrocene-based single-molecule devices with Fe-Au interfacial contact geometries form at room temperature in the absence of supporting coordinating ligands. Applying a photoredox reaction, we propose that ferrocene only functions effectively as a contact group when oxidized, binding to gold through a formal Fe3+center. This observation is further supported by a series of control measurements and density functional theory calculations. Our findings extend the scope of junction contact chemistries beyond those involving main group elements, lay the foundation for light switchable ferrocene-based single-molecule devices, and highlight new potential mechanistic function(s) of unsubstituted ferrocenium groups in synthetic processes. 
    more » « less
  4. The activation of O 2 at thiolate–ligated iron( ii ) sites is essential to the function of numerous metalloenzymes and synthetic catalysts. Iron–thiolate bonds in the active sites of nonheme iron enzymes arise from either coordination of an endogenous cysteinate residue or binding of a deprotonated thiol-containing substrate. Examples of the latter include sulfoxide synthases, such as EgtB and OvoA, that utilize O 2 to catalyze tandem S–C bond formation and S -oxygenation steps in thiohistidine biosyntheses. We recently reported the preparation of two mononuclear nonheme iron–thiolate complexes (1 and 2) that serve as structural active-site models of substrate-bound EgtB and OvoA ( Dalton Trans. 2020, 49 , 17745–17757). These models feature monodentate thiolate ligands and tripodal N 4 ligands with mixed pyridyl/imidazolyl donors. Here, we describe the reactivity of 1 and 2 with O 2 at low temperatures to give metastable intermediates (3 and 4, respectively). Characterization with multiple spectroscopic techniques (UV-vis absorption, NMR, variable-field and -temperature Mössbauer, and resonance Raman) revealed that these intermediates are thiolate-ligated iron( iii ) dimers with a bridging oxo ligand derived from the four-electron reduction of O 2 . Structural models of 3 and 4 consistent with the experimental data were generated via density functional theory (DFT) calculations. The combined experimental and computational results illuminate the geometric and electronic origins of the unique spectral features of diiron( iii )-μ-oxo complexes with thiolate ligands, and the spectroscopic signatures of 3 and 4 are compared to those of closely-related diiron( iii )-μ-peroxo species. Collectively, these results will assist in the identification of intermediates that appear on the O 2 reaction landscapes of iron–thiolate species in both biological and synthetic environments. 
    more » « less
  5. Mononuclear heteroleptic complexes [Fe(tpma)(bimz)](ClO4)2 (1a), [Fe(tpma)(bimz)](BF4)2 (1b), [Fe(bpte)(bimz)](ClO4)2 (2a), and [Fe(bpte)(bimz)](BF4)2 (2b) (tpma = tris(2-pyridylmethyl)amine, bpte = S,S′-bis(2-pyridylmethyl)-1,2-thioethane, bimz = 2,2′-biimidazoline) were prepared by reacting the corresponding Fe(II) salts with stoichiometric amounts of the ligands. All complexes exhibit temperature-induced spin crossover (SCO), but the SCO temperature is substantially lower for complexes 1a and 1b as compared to 2a and 2b, indicating the stronger ligand field afforded by the N2S2-coordinating bpte ligand relative to the N4-coordinating tpma. Our findings suggest that ligands with mixed N/S coordination can be employed to discover new SCO complexes and to tune the transition temperature of known SCO compounds by substituting for purely N-coordinating ligands. 
    more » « less