Bounds and Complexity Results for Learning Coalition-Based Interaction Functions in Networked Social Systems
Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models. We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number of queries depends on the structure of the underlying network and number of coalitions.
- Publication Date:
- NSF-PAR ID:
- 10199462
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 34
- Issue:
- 04
- Page Range or eLocation-ID:
- 3138 to 3145
- ISSN:
- 2159-5399
- Sponsoring Org:
- National Science Foundation
More Like this
-
Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models.We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number ofmore »
-
Using a discrete dynamical system model for a networked social system, we consider the problem of learning a class of local interaction functions in such networks. Our focus is on learning local functions which are based on pairwise disjoint coalitions formed from the neighborhood of each node. Our work considers both active query and PAC learning models. We establish bounds on the number of queries needed to learn the local functions under both models.We also establish a complexity result regarding efficient consistent learners for such functions. Our experimental results on synthetic and real social networks demonstrate how the number ofmore »
-
Using synchronous dynamical systems (SyDSs) as a formal model for networked social systems, we study the problem of inferring users’ choices in such systems. We observe that SyDSs with deterministic and probabilistic threshold functions as local functions can capture users’ choices in the context of contagion propagation in social networks. We use an active query mechanism where a user interacts with a system by submitting queries, and the responses to the queries are used to infer the local functions. We develop methods that provide provably efficient query sets for inferring both deterministic and probabilistic forms of threshold functions. We alsomore »
-
Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3]more »
-
Abstract Statistical relational learning (SRL) and graph neural networks (GNNs) are two powerful approaches for learning and inference over graphs. Typically, they are evaluated in terms of simple metrics such as accuracy over individual node labels. Complex
aggregate graph queries (AGQ) involving multiple nodes, edges, and labels are common in the graph mining community and are used to estimate important network properties such as social cohesion and influence. While graph mining algorithms support AGQs, they typically do not take into account uncertainty, or when they do, make simplifying assumptions and do not build full probabilistic models. In this paper, we examine themore »