skip to main content


Title: Genesis of an East Pacific Easterly Wave from a Panama Bight MCS: A Case Study Analysis from June 2012
Abstract This study investigates the transition of a Panama Bight mesoscale convective system (MCS) into the easterly wave (EW) that became Hurricane Carlotta (2012). Reanalysis, observations, and a convective-permitting Weather Research and Forecasting (WRF) Model simulation are used to analyze the processes contributing to EW genesis. A vorticity budget analysis shows that convective coupling and vortex stretching are very important to the transition in this case, while horizontal advection is mostly responsible for the propagation of the system. In the model, the disturbance is dominated by stratiform vertical motion profiles and a midlevel vortex, while the system is less top-heavy and is characterized by more prominent low-level vorticity later in the transition in reanalysis. The developing disturbance starts its evolution as a mesoscale convective system in the Bight of Panama. Leading up to MCS formation the Chocó jet intensifies, and during the MCS-to-EW transition the Papagayo jet strengthens. Differences in the vertical structure of the system between reanalysis and the model suggest that the relatively more bottom-heavy disturbance in reanalysis may have stronger interactions with the Papagayo jet. Field observations like those collected during the Organization of Tropical East Pacific Convection (OTREC) campaign are needed to further our understanding of this east Pacific EW genesis pathway and the factors that influence it, including the important role for the vertical structure of the developing disturbances in the context of the vorticity budget.  more » « less
Award ID(s):
1735978
NSF-PAR ID:
10199538
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
77
Issue:
10
ISSN:
0022-4928
Page Range / eLocation ID:
3567 to 3584
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A 6.5-month, convection-permitting simulation is conducted over Argentina covering the Remote Sensing of Electrification, Lightning, And Mesoscale/Microscale Processes with Adaptive Ground Observations and Clouds, Aerosols, and Complex Terrain Interactions (RELAMPAGO-CACTI) field campaign and is compared with observations to evaluate mesoscale convective system (MCS) growth prediction. Observed and simulated MCSs are consistently identified, tracked, and separated into growth, mature, and decay stages using top-of-the-atmosphere infrared brightness temperature and surface rainfall. Simulated MCS number, lifetime, seasonal and diurnal cycles, and various cloud-shield characteristics including growth rate are similar to those observed. However, the simulation produces smaller rainfall areas, greater proportions of heavy rainfall, and faster system propagations. Rainfall area is significantly underestimated for long-lived MCSs but not for shorter-lived MCSs, and rain rates are always overestimated. These differences result from a combination of model and satellite retrieval biases, in which simulated MCS rain rates are shifted from light to heavy, while satellite-retrieved rainfall is too frequent relative to rain gauge estimates. However, the simulation reproduces satellite-retrieved MCS cloud-shield evolution well, supporting its usage to examine environmental controls on MCS growth. MCS initiation locations are associated with removal of convective inhibition more than maximized low-level moisture convergence or instability. Rapid growth is associated with a stronger upper-level jet (ULJ) and a deeper northwestern Argentinean low that causes a stronger northerly low-level jet (LLJ), increasing heat and moisture fluxes, low-level vertical wind shear, baroclinicity, and instability. Sustained growth corresponds to similar LLJ, baroclinicity, and instability conditions but is less sensitive to the ULJ, large-scale vertical motion, or low-level shear. Growth sustenance controls MCS maximum extent more than growth rate. 
    more » « less
  2. Abstract The bow-and-arrow Mesoscale Convective System (MCS) has a unique structure with two convective lines resembling the shape of an archer’s bow and arrow. These MCSs and their arrow convection (located behind the MCS leading line) can produce hazardous winds and flooding extending over hundreds of kilometers, which are often poorly predicted in operational forecasts. This study examines the dynamics of a bow-and-arrow MCS observed over the Yangtze–Huai Plains of China, with a focus on the arrow convection provided. The analysis utilized backward trajectories and Lagrangian vertical momentum budgets to simulations employing the WRF‐ARW and CM1 models. Cells within the arrow in the WRF-ARW simulations of the MCS were elevated, initially forming as convectively unstable air within the low-level jet (LLJ), which gently ascended over the cold pool and converged with the MCS’s mesoscale convective vortex (MCV) at higher altitudes. The subsequent ascent in these cells was enhanced by dynamic pressure forcing due to the updraft being within a layer where the vertical shear changed with height due to the superposition of the LLJ and the MCV. These dynamic forcings initially played a larger role in the ascent than the parcel’s buoyancy. These findings were bolstered by idealized simulations employing the CM1 model. These results illustrate a challenge for accurately forecasting bow-and-arrow MCSs as the updraft magnitude depends on dynamical forcing associated with the interaction between vertical shear associated with the environment and due to convectively generated circulations. 
    more » « less
  3. Abstract

    Observations from the Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT), Genesis and Rapid Intensification Processes (GRIP), and Intensity Forecast Experiment (IFEX) field campaigns are analyzed to investigate the mesoscale processes leading to the tropical cyclogenesis of Hurricane Karl (2010). Research aircraft missions provided Doppler radar, in situ flight level, and dropsonde data documenting the structural changes of the predepression disturbance. Following the pre-Karl wave pouch, variational analyses at the meso-β and meso-α scales suggest that the convective cycle in Karl alternately built the low- and midlevel circulations leading to genesis episodically rather than through a sustained lowering of the convective mass flux from increased stabilization. Convective bursts that erupt in the vorticity-rich environment of the recirculating pouch region enhance the low-level meso-β- and meso-α-scale circulation through vortex stretching. As the convection wanes, the resulting stratiform precipitation strengthens the midlevel circulation through convergence associated with ice microphysical processes, protecting the disturbance from the intrusion of dry environmental air. Once the column saturation fraction returns to a critical value, a subsequent convective burst below the midlevel circulation further enhances the low-level circulation, and the convective cycle repeats. The analyses suggest that the onset of deep convection and associated low-level spinup were closely related to the coupling of the vorticity and moisture fields at low and midlevels. Our interpretation of the observational analysis presented in this study reaffirms a primary role of deep convection in the genesis process and provides a hypothesis for the supporting role of stratiform precipitation and the midlevel vortex.

     
    more » « less
  4. The Madden–Julian Oscillation (MJO) is a planetary-scale weather system that creates a 30–60 day oscillation in zonal winds and precipitation in the tropics. Its envelope of enhanced rainfall forms over the Indian Ocean and moves slowly eastward before dissipating near the Date Line. The MJO modulates tropical cyclone (TC) genesis, intensity, and landfall in the Indian, Pacific, and Atlantic Oceans. This study examines the mechanisms by which the MJO alters TC genesis. In particular, MJO circulations are partitioned into Kelvin and Rossby waves for each of the developing, mature, and dissipating stages of the convective envelope, and locations of TC genesis are related to these circulations. Throughout the MJO’s convective life cycle, TC genesis is inhibited to the east of the convective envelope, and enhanced just west of the convective envelope. The inhibition of TC genesis to the east of the MJO is largely due to vertical motion associated with the Kelvin wave circulation, as is the enhancement of TC genesis just west of the MJO during the developing stage. During the mature and dissipating stages, the MJO’s Rossby gyres intensify, creating regions of low-level vorticity, favoring TC genesis to its west. Over the 36-year period considered here, the MJO modulation of TC genesis increases due to the intensification of the MJO’s Kelvin wave circulation.

     
    more » « less
  5. Abstract The Remote sensing of Electrification, Lightning, And Mesoscale/microscale Processes with Adaptive Ground Observations (RELAMPAGO) campaign produced unparalleled observations of the South American low-level jet (SALLJ) in central Argentina with high temporal observations located in the path of the jet and upstream of rapidly growing convection. The vertical and temporal structure of the jet is characterized using 3-hourly soundings launched at two fixed sites near the Sierras de Córdoba (SDC), along with high-resolution reanalysis data. Objective SALLJ identification criteria are applied to each sounding to determine the presence, timing, and vertical characteristics of the jet. The observations largely confirm prior results showing that SALLJs most frequently come from the north, occur overnight, and peak in the low levels, though SALLJs notably peaked higher near the end of longer-duration events during RELAMPAGO. This study categorizes SALLJs into shorter-duration events with jet cores peaking overnight in the low levels and longer 5–6-day events with elevated jets near the end of the period that lack a clear diurnal cycle. Evidence of both boundary layer processes and large-scale forcing were observed during shorter-duration events, whereas synoptic forcing dominated the longer 5–6-day events. The highest amounts of moisture and larger convective coverage east of the SDC occurred near the end of the 5–6-day SALLJ events. Significance Statement The South American low-level jet (SALLJ) is an area of enhanced northerly winds that likely contributes to long-lived, widespread thunderstorms in Southeastern South America (SESA). This study uses observations from a recent SESA field project to improve understanding of the variability of the SALLJ and the underlying processes. We related jet occurrence to upper-level environmental patterns and differences in the progression speed of those patterns to varying durations of the jet. Longer-duration jets were more elevated, transported moisture southward from the Amazon, and coincided with the most widespread storms. These findings enable future research to study the role of the SALLJ in the life cycle of storms in detail, leading to improved storm prediction in SESA. 
    more » « less