A typical Madden–Julian Oscillation (MJO) generates a large region of enhanced rainfall over the equatorial Indian Ocean that moves slowly eastward into the western Pacific. Tropical cyclones often form on the poleward edges of the MJO moist-convective envelope, frequently impacting both southeast Asia and northern Australia, and on occasion Eastern Africa. This paper addresses the question of whether these MJO-induced tropical cyclones will become more numerous in the future as the oceans warm. The Lagrangian Atmosphere Model (LAM), which has been carefully tuned to simulate realistic MJO circulations, is used to study the sensitivity of MJO modulation of tropical cyclogenesis (TCG) to global warming. A control simulation for the current climate is compared with a simulation with enhanced radiative forcing consistent with that for the latter part of the 21st century under Shared Socioeconomic Pathway (SSP) 585. The LAM control run reproduces the observed MJO modulation of TCG, with about 70 percent more storms forming than monthly climatology predicts within the MJO’s convective envelope. The LAM SSP585 run suggests that TCG enhancement within the convective envelope could reach 170 percent of the background value under a high greenhouse gas emissions scenario, owing to a strengthening of Kelvin and Rossby wave components of the MJO’s circulation. 
                        more » 
                        « less   
                    
                            
                            The Relationship between Madden–Julian Oscillation Moist Convective Circulations and Tropical Cyclone Genesis
                        
                    
    
            The Madden–Julian Oscillation (MJO) is a planetary-scale weather system that creates a 30–60 day oscillation in zonal winds and precipitation in the tropics. Its envelope of enhanced rainfall forms over the Indian Ocean and moves slowly eastward before dissipating near the Date Line. The MJO modulates tropical cyclone (TC) genesis, intensity, and landfall in the Indian, Pacific, and Atlantic Oceans. This study examines the mechanisms by which the MJO alters TC genesis. In particular, MJO circulations are partitioned into Kelvin and Rossby waves for each of the developing, mature, and dissipating stages of the convective envelope, and locations of TC genesis are related to these circulations. Throughout the MJO’s convective life cycle, TC genesis is inhibited to the east of the convective envelope, and enhanced just west of the convective envelope. The inhibition of TC genesis to the east of the MJO is largely due to vertical motion associated with the Kelvin wave circulation, as is the enhancement of TC genesis just west of the MJO during the developing stage. During the mature and dissipating stages, the MJO’s Rossby gyres intensify, creating regions of low-level vorticity, favoring TC genesis to its west. Over the 36-year period considered here, the MJO modulation of TC genesis increases due to the intensification of the MJO’s Kelvin wave circulation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2140281
- PAR ID:
- 10483182
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Climate
- Volume:
- 11
- Issue:
- 7
- ISSN:
- 2225-1154
- Page Range / eLocation ID:
- 134
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The Madden–Julian Oscillation (MJO) is a large-scale tropical weather system that generates heavy rainfall over the equatorial Indian and western Pacific Oceans on a 40–50 day cycle. Its circulation propagates eastward around the entire world and impacts tropical cyclone genesis, monsoon onset, and mid-latitude flooding. This study examines the mechanism of the MJO in the Lagrangian atmospheric model (LAM), which has been shown to simulate the MJO accurately, and which predicts that MJO circulations will intensify as oceans warm. The LAM MJO’s first baroclinic circulation is projected onto a Kelvin wave leaving a residual that closely resembles a Rossby wave. The contribution of each wave type to moisture and moist enthalpy budgets is assessed. While the vertical advection of moisture by the Kelvin wave accounts for most of the MJO’s precipitation, this wave also exports a large amount of dry static energy, so that in total, it reduces the column integrated moist enthalpy during periods of heavy precipitation. In contrast, the Rossby wave’s horizontal circulation builds up moisture prior to the most intense convection, and its surface wind perturbations enhance evaporation near the center of MJO convection. Surface fluxes associated with the Kelvin wave help to maintain its circulation outside of the MJO’s convectively active region.more » « less
- 
            Abstract The variability of the phase speed of the Madden–Julian oscillation (MJO) is poorly understood. The authors assess how the phase speed of the convective signal of the MJO associates with the background states over eastern Africa and the Indian Ocean. Relaxation of the coupling between tropical modes and their circulation has been previously linked to faster propagation; for example, the MJO speeds up over the eastern Pacific where its convective signal decouples from the circulation. In contrast, our results show that fast MJO events happen to exist during periods of wetter background states (>90 days) from East Africa across the Indian Ocean, whereas slow MJO is associated with dry background states. We found that fast MJO exhibits strong active and inactive phases with a structure suggesting more hierarchical convection. Results indicate that the association of the phase speed of the MJO as seen in the integrated filtered moist static energy with its tendency is stronger than the association of the phase speed as observed in the dry static energy with its tendency which is consistent with the acceleration of the MJO during wet background states. Also, our results indicate that the MJO may be faster during periods of enhanced low-level moisture because these periods have anomalously weak upper-tropospheric easterly background winds, which reduce the westward advection of the MJO by the background easterly wind, resulting in higher eastward phase speed of the MJO. The acceleration of the MJO by the background zonal wind overwhelms the deceleration associated with the moist-wave dynamics. Significance StatementThis study shows that the Madden–Julian oscillation (MJO), which is the dominant subseasonal weather signal in the tropics, moves eastward more quickly across eastern Africa and the Indian Ocean when the region is abnormally moist. The faster propagation does not appear to result from the higher moisture but instead from encountering weaker-than-normal upper-air winds from the east that tend to occur during moist periods.more » « less
- 
            The Madden–Julian oscillation (MJO) excites strong variations in extratropical geopotential heights that modulate extratropical weather, making the MJO an important predictability source on subseasonal to seasonal time scales (S2S). Previous research demonstrates a strong similarity of teleconnection patterns across MJO events for certain MJO phases (i.e., pattern consistency) and increased model ensemble agreement during these phases that is beneficial for extended numerical weather forecasts. However, the MJO’s ability to modulate extratropical weather varies greatly on interannual time scales, which brings extra uncertainty in leveraging the MJO for S2S prediction. Few studies have investigated the mechanisms responsible for variations in the consistency of MJO tropical–extratropical teleconnections on interannual time scales. This study uses reanalysis data, ensemble simulations of a linear baroclinic model, and a Rossby wave ray tracing algorithm to demonstrate that two mechanisms largely determine the interannual variability of MJO teleconnection consistency. First, the meridional shift of stationary Rossby wave ray paths indicates increases (decreases) in the MJO’s extratropical modulation during La Niña (El Niño) years. Second, a previous study proposed that the constructive interference of Rossby wave signals caused by a dipole Rossby wave source pattern across the subtropical jet during certain MJO phases produces a consistent MJO teleconnection. However, this dipole feature is less clear in both El Niño and La Niña years due to the extension and contraction of MJO convection, respectively, which would decrease the MJO’s influence in the extratropics. Hence, considering the joint influence of the basic state and MJO forcing, this study suggests a diminished potential to leverage the MJO for S2S prediction in El Niño years.more » « less
- 
            Regional MJO Modulation of Northwest Pacific Tropical Cyclones Driven by Multiple Transient ControlsAbstract The Madden–Julian Oscillation (MJO) is widely acknowledged for its ability to modulate Northwest Pacific tropical cyclones (TCs), but a complete understanding of the underlying mechanisms remains uncertain. Beyond established effects of the MJO's relative humidity envelope, other dynamical factors have recently been invoked via new genesis potential indices and high‐resolution modeling studies. Here we revisit the ability of the MJO to modulate West Pacific TCs through a quasi‐explicit cyclone downscaling strategy driven by composited observations, paired later with a genesis index to investigate regional drivers of modulation. We reveal two distinct spatial modes of TC modulation in which the MJO's dynamic and thermodynamic effects act in tandem to increase TCs. In the South China Sea, for instance, shear reductions associated with the MJO's circulation lead to increasing potential intensity ahead of the arrival of a positive humidity anomaly, all of which combine for an extended period of cyclogenesis favorability.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    