Autonomous survey and aerial photogrammetry applications require solving a path planning problem that ensures sensor coverage over a specified area. In this work, we provide a multi-robot path planning method that can obtain this coverage over an arbitrary area of interest. We extend our previous method, path optimization for population counting with overhead robotic networks (POPCORN), by a divide-and-conquer scheme, split and link tiles (SALT), which drastically decreases the time needed for route planning. These POPCORN instances can be computed in parallel and combined with SALT in a scalable manner to produce coverage paths over very large areas of interest. To demonstrate this algorithm’s capabilities, we implemented our planning algorithm with a team of drones to conduct multiple photographic aerial wildlife surveys of the Cape Crozier Adélie penguin rookery on Ross Island, Antarctica, one of the largest Adélie penguin colonies in the world. The colony, which contains over 300,000 nesting pairs and spans over 2 km, was surveyed in about 3 hours. In contrast, previous human-piloted single-drone surveys of the same colony required over 2 days to complete. We also have deployed our survey system at several islets at Mono Lake, California, to survey a California gull colony as well as at a 2000-acre ranch in Marin, California. We provide this survey path planning tool as an open-source software package named wadl.
more »
« less
Multidrone aerial surveys of penguin colonies in Antarctica
Speed is essential in wildlife surveys due to the dynamic movement of animals throughout their environment and potentially extreme changes in weather. In this work, we present a multirobot path-planning method for conducting aerial surveys over large areas designed to make the best use of limited flight time. Unlike current survey path-planning solutions based on geometric patterns or integer programs, we solve a series of satisfiability modulo theory instances of increasing complexity. Each instance yields a set of feasible paths at each iteration and recovers the set of shortest paths after sufficient time. We implemented our planning algorithm with a team of drones to conduct multiple photographic aerial wildlife surveys of Cape Crozier, one of the largest Adélie penguin colonies in the world containing more than 300,000 nesting pairs. Over 2 square kilometers was surveyed in about 3 hours. In contrast, previous human-piloted single-drone surveys of the same colony required over 2 days to complete. Our method reduces survey time by limiting redundant travel while also allowing for safe recall of the drones at any time during the survey. Our approach can be applied to other domains, such as wildfire surveys in high-risk weather conditions or disaster response.
more »
« less
- Award ID(s):
- 1834986
- PAR ID:
- 10199631
- Publisher / Repository:
- American Association for the Advancement of Science (AAAS)
- Date Published:
- Journal Name:
- Science Robotics
- Volume:
- 5
- Issue:
- 47
- ISSN:
- 2470-9476
- Page Range / eLocation ID:
- Article No. eabc3000
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Helicopters used for aerial wildlife surveys are expensive, dangerous and time consuming. Drones and thermal infrared cameras can detect wildlife, though the ability to detect individuals is dependent on weather conditions. While we have a good understanding of local weather conditions, we do not have a broad-scale assessment of ambient temperature to plan drone wildlife surveys. Climate change will affect our ability to conduct thermal surveys in the future. Our objective was to determine optimal annual and daily time periods to conduct surveys. We present a case study in Texas, (United States of America [USA]) where we acquired and compared average monthly temperature data from 1990 to 2019, hourly temperature data from 2010 to 2019 and projected monthly temperature data from 2021 to 2040 to identify areas where surveys would detect a commonly studied ungulate (white-tailed deer [ Odocoileus virginianus ]) during sunny or cloudy conditions. Mean temperatures increased when comparing the 1990–2019 to 2010–2019 periods. Mean temperatures above the maximum ambient temperature in which white-tailed deer can be detected increased in 72, 10, 10, and 24 of the 254 Texas counties in June, July, August, and September, respectively. Future climate projections indicate that temperatures above the maximum ambient temperature in which white-tailed deer can be detected will increase in 32, 12, 15, and 47 counties in June, July, August, and September, respectively when comparing 2010–2019 with 2021–2040. This analysis can assist planning, and scheduling thermal drone wildlife surveys across the year and combined with daily data can be efficient to plan drone flights.more » « less
-
Abstract Snow conditions are changing rapidly across our planet, which has important implications for wildlife managers. In Alaska, USA, the later arrival of snow is challenging wildlife managers' ability to conduct aerial fall (autumn) moose (Alces alces) surveys. Complete snow cover is required to reliably detect and count moose using visual observation from an aircraft. With inadequate snow to help generate high‐quality moose survey data, it is difficult for managers to determine if they are effectively meeting population goals and optimizing hunting opportunities. We quantified past relationships and projected future trends between snow conditions and moose survey success across 7 different moose management areas in Alaska using 32 years (1987–2019) of moose survey data and modeled snow data. We found that modeled mean snow depth was 15 cm (SD = 11) when moose surveys were initiated, and snow depths were greater in years when surveys were completed compared to years when surveys were canceled. Further, we found that mean snow depth toward the beginning of the survey season (1 November) was the best predictor of whether a survey was completed in any given year. Based on modeled conditions, the trend in mean snow depth on 1 November declined from 1980 to 2020 in 5 out of 7 survey areas. These findings, coupled with future projections, indicated that by 2055, the delayed onset of adequate snow accumulation in the fall will prevent the completion of moose surveys over roughly 60% of Alaska's managed moose areas at this time of the year. Our findings can be used by wildlife managers to guide decisions related to the future reliability of aerial fall moose surveys and help to identify timelines for development of alternate measurement and monitoring methods.more » « less
-
Wildlife population monitoring over large geographic areas is increasingly feasible due to developments in aerial survey methods coupled with the use of computer vision models for identifying and classifying individual organisms. However, aerial surveys still occur infrequently, and there are often long delays between the acquisition of airborne imagery and its conversion into population monitoring data. Near real‐time monitoring is increasingly important for active management decisions and ecological forecasting. Accomplishing this over large scales requires a combination of airborne imagery, computer vision models to process imagery into information on individual organisms, and automated workflows to ensure that imagery is quickly processed into data following acquisition. Here we present our end‐to‐end workflow for conducting near real‐time monitoring of wading birds in the Everglades, Florida, USA. Imagery is acquired as frequently as weekly using uncrewed aircraft systems (aka drones), processed into orthomosaics (using Agisoft metashape), converted into individual‐level species data using a Retinanet‐50 object detector, post‐processed, archived, and presented on a web‐based visualization platform (using Shiny). The main components of the workflow are automated using Snakemake. The underlying computer vision model provides accurate object detection, species classification, and both total and species‐level counts for five out of six target species (White Ibis, Great Egret, Great Blue Heron, Wood Stork, and Roseate Spoonbill). The model performed poorly for Snowy Egrets due to the small number of labels and difficulty distinguishing them from White Ibis (the most abundant species). By automating the post‐survey processing, data on the populations of these species is available in near real‐time (<1 week from the date of the survey) providing information at the time scales needed for ecological forecasting and active management.more » « less
-
Use of unmanned aerial vehicle (UAV) technology is predicted to increase dramatically from more than 600,000 drones registered just with the US Federal Aviation Administration (FAA) to nearly 7,000,000 over the next 12 years ( FAA 1,2 ) This popularity is evident in their increasing use in and around public outdoor spaces, including parks, stadiums, outdoor amphitheaters, festival grounds, or outdoor markets. While there is considerable research on unmanned aerial vehicle (UAV) applications and navigation (Koh 2012, Nemeth 2010) and an emerging body of work in landscape architecture (Kullmann 2017, Park 2016), there is no research addressing increasing conflicts between public space visitors, drone navigation in public space, and its effect on the planning and design of public space. The paper presents initial findings from funded research to develop landscape architectural design and planning responses supporting low cost detection technology to deter the illegal use of drones in public spaces. Methods of data collection employed surveys of botanical garden visitors concerning their preferences for site landscape features and experiences, their awareness, attitudes, and preferences about the presence of drones in public space, and potential aerial visual access to a range of forested and open landscapes frequented by visitors in the garden. Findings suggest that given public concern about the presence of drones, landscape planning and design of such public spaces should provide continuous landscape features with restricted aerial visual access surrounding and connecting public areas with open aerial visual access.more » « less
An official website of the United States government
