skip to main content


Title: Multidrone aerial surveys of penguin colonies in Antarctica

Speed is essential in wildlife surveys due to the dynamic movement of animals throughout their environment and potentially extreme changes in weather. In this work, we present a multirobot path-planning method for conducting aerial surveys over large areas designed to make the best use of limited flight time. Unlike current survey path-planning solutions based on geometric patterns or integer programs, we solve a series of satisfiability modulo theory instances of increasing complexity. Each instance yields a set of feasible paths at each iteration and recovers the set of shortest paths after sufficient time. We implemented our planning algorithm with a team of drones to conduct multiple photographic aerial wildlife surveys of Cape Crozier, one of the largest Adélie penguin colonies in the world containing more than 300,000 nesting pairs. Over 2 square kilometers was surveyed in about 3 hours. In contrast, previous human-piloted single-drone surveys of the same colony required over 2 days to complete. Our method reduces survey time by limiting redundant travel while also allowing for safe recall of the drones at any time during the survey. Our approach can be applied to other domains, such as wildfire surveys in high-risk weather conditions or disaster response.

 
more » « less
Award ID(s):
1834986
NSF-PAR ID:
10199631
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science Robotics
Volume:
5
Issue:
47
ISSN:
2470-9476
Page Range / eLocation ID:
Article No. eabc3000
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Autonomous survey and aerial photogrammetry applications require solving a path planning problem that ensures sensor coverage over a specified area. In this work, we provide a multi-robot path planning method that can obtain this coverage over an arbitrary area of interest. We extend our previous method, path optimization for population counting with overhead robotic networks (POPCORN), by a divide-and-conquer scheme, split and link tiles (SALT), which drastically decreases the time needed for route planning. These POPCORN instances can be computed in parallel and combined with SALT in a scalable manner to produce coverage paths over very large areas of interest. To demonstrate this algorithm’s capabilities, we implemented our planning algorithm with a team of drones to conduct multiple photographic aerial wildlife surveys of the Cape Crozier Adélie penguin rookery on Ross Island, Antarctica, one of the largest Adélie penguin colonies in the world. The colony, which contains over 300,000 nesting pairs and spans over 2 km, was surveyed in about 3 hours. In contrast, previous human-piloted single-drone surveys of the same colony required over 2 days to complete. We also have deployed our survey system at several islets at Mono Lake, California, to survey a California gull colony as well as at a 2000-acre ranch in Marin, California. We provide this survey path planning tool as an open-source software package named wadl. 
    more » « less
  2. Abstract Helicopters used for aerial wildlife surveys are expensive, dangerous and time consuming. Drones and thermal infrared cameras can detect wildlife, though the ability to detect individuals is dependent on weather conditions. While we have a good understanding of local weather conditions, we do not have a broad-scale assessment of ambient temperature to plan drone wildlife surveys. Climate change will affect our ability to conduct thermal surveys in the future. Our objective was to determine optimal annual and daily time periods to conduct surveys. We present a case study in Texas, (United States of America [USA]) where we acquired and compared average monthly temperature data from 1990 to 2019, hourly temperature data from 2010 to 2019 and projected monthly temperature data from 2021 to 2040 to identify areas where surveys would detect a commonly studied ungulate (white-tailed deer [ Odocoileus virginianus ]) during sunny or cloudy conditions. Mean temperatures increased when comparing the 1990–2019 to 2010–2019 periods. Mean temperatures above the maximum ambient temperature in which white-tailed deer can be detected increased in 72, 10, 10, and 24 of the 254 Texas counties in June, July, August, and September, respectively. Future climate projections indicate that temperatures above the maximum ambient temperature in which white-tailed deer can be detected will increase in 32, 12, 15, and 47 counties in June, July, August, and September, respectively when comparing 2010–2019 with 2021–2040. This analysis can assist planning, and scheduling thermal drone wildlife surveys across the year and combined with daily data can be efficient to plan drone flights. 
    more » « less
  3. Unmanned aerial vehicles (UAVs), commonly known as drones, are becoming increasingly popular for various applications. Freely flying drones create highly dynamic environments, where conventional routing algorithms which rely on stationary network contact graphs fail to perform efficiently. Also, link establishment through exploring optimal paths using hello messages (as is used in AODV algorithm) deems extremely inefficient and costly for rapidly changing network topologies. In this paper, we present a distance-based greedy routing algorithm for UAV networks solely based on UAVs' local observations of their surrounding subnetwork. Thereby, neither a central decision maker nor a time consuming route setup and maintenance mechanism is required. To evaluate the proposed method, we derive an analytical bound for the expected number of hops that a packet traverses. Also, we find the expected end-to-end distance traveled by each packet as well as the probability of successful delivery. The simulation results verify the accuracy of the developed analytical expressions and show considerable improvement compared to centralized shortest path routing algorithms. 
    more » « less
  4. This paper presents a novel mission-oriented path planning algorithm for a team of Unmanned Aerial Vehicles (UAVs). In the proposed algorithm, each UAV takes autonomous decisions to find its flight path towards a designated mission area while avoiding collisions to stationary and mobile obstacles. The main distinction with similar algorithms is that the target destination for each UAV is not apriori fixed and the UAVs locate themselves such that they collectively cover a potentially time-varying mission area. One potential application for this algorithm is deploying a team of autonomous drones to collectively cover an evolving forest wildfire and provide virtual reality for firefighters. We formulated the algorithm based on Reinforcement Learning (RL) with a new method to accommodate continuous state space for adjacent locations. To consider a more realistic scenario, we assess the impact of localization errors on the performance of the proposed algorithm. Simulation results show that the success probability for this algorithm is about 80% when the observation error variance is as high as 100 (SNR:-6dB). 
    more » « less
  5. Unmanned aerial vehicles or drones are widely used or proposed to carry out various tasks in low-altitude airspace. To safely integrate drone traffic into congested airspace, the current concept of operations for drone traffic management will reserve a static traffic volume for the whole planned trajectory, which is safe but inefficient. In this paper, we propose a dynamic traffic volume reservation method for the drone traffic management system based on a multiscale A* algorithm. The planning airspace is represented as a multiresolution grid world, where the resolution will be coarse for the area on the far side. Therefore, each drone only needs to reserve a temporary traffic volume along the finest flight path in its local area, which helps release the airspace back to others. Moreover, the multiscale A* can run nearly in real-time due to a much smaller search space, which enables dynamically rolling planning to consider updated information. To handle the infeasible corner cases of the multiscale algorithm, a hybrid strategy is further developed, which can maintain a similar optimal level to the classic A* algorithm while still running nearly in real-time. The presented numerical results support the advantages of the proposed approach. 
    more » « less