skip to main content

Title: Meta-AR-App: An Authoring Platform for Collaborative Augmented Reality in STEM Classrooms
Augmented Reality (AR) has become a valuable tool for education and training processes. Meanwhile, cloud-based technologies can foster collaboration and other interaction modalities to enhance learning. We combine the cloud capabilities with AR technologies to present Meta-AR-App, an authoring platform for collaborative AR, which enables authoring between instructors and students. Additionally, we introduce a new application of an established collaboration process, the pull-based development model, to enable sharing and retrieving of AR learning content. We customize this model and create two modalities of interaction for the classroom: local (student to student) and global (instructor to class) pull. Based on observations from our user studies, we organize a four-category classroom model which implements our system: Work, Design, Collaboration, and Technology. Further, our system enables an iterative improvement workflow of the class content and enables synergistic collaboration that empowers students to be active agents in the learning process.
Authors:
Award ID(s):
1839971
Publication Date:
NSF-PAR ID:
10200086
Journal Name:
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
Page Range or eLocation-ID:
1-14
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivation: This is a complete paper. There was a sudden shift from traditional learning to online learning in Spring 2020 with the outbreak of COVID-19. Although online learning is not a new topic of discussion, universities, faculty, and students were not prepared for this sudden change in learning. According to a recent article in ‘The Chronicle of Higher Education, “even under the best of circumstances, virtual learning requires a different, carefully crafted approach to engagement”. The Design Thinking course under study is a required freshmen level course offered in a Mid-western University. The Design Thinking course is offered in amore »flipped format where all the content to be learned is given to students beforehand and the in-class session is used for active discussions and hands-on learning related to the content provided at the small group level. The final learning objective of the course is a group project where student groups are expected to come up with functional prototypes to solve a real-world problem following the Design Thinking process. There were eighteen sections of the Design Thinking course offered in Spring 2020, and with the outbreak of COVID-19, a few instructors decided to offer synchronous online classes (where instructors were present online during class time and provided orientation and guidance just like a normal class) and a few others decided to offer asynchronous online classes (where orientation from the instructor was delivered asynchronous and the instructor was online during officially scheduled class time but interactions were more like office hours). Students were required to be present synchronously at the team level during the class time in a synchronous online class. In an asynchronous online class, students could be synchronous at the team level to complete their assignment any time prior to the deadline such that they could work during class time but they were not required to work at that time. Through this complete paper, we are trying to understand student learning, social presence and learner satisfaction with respect to different modes of instruction in a freshmen level Design Thinking course. Background: According to literature, synchronous online learning has advantages such as interaction, a classroom environment, and better course quality whereas asynchronous online learning has advantages such as self-controlled and self-directed learning. The disadvantages of synchronous online learning include the learning process, technology issues, and distraction. Social isolation, lack of interaction, and technology issue are a few disadvantages related to asynchronous online learning. Problem Being Addressed: There is a limited literature base investigating different modes of online instruction in a Design Thinking course. Through this paper, we are trying to understand and share the effectiveness of synchronous and asynchronous modes of instruction in an online Flipped Design Thinking Course. The results of the paper could also help in this time of pandemic by shedding light on the more effective way to teach highly active group-based classrooms for better student learning, social presence, and learner satisfaction. Method/Assessment: An end of semester survey was monitored in Spring 2020 to understand student experiences in synchronous and asynchronous Design Thinking course sections. The survey was sent to 720 students enrolled in the course in Spring 2020 and 324 students responded to the survey. Learning was measured using the survey instrument developed by Walker (2003) and the social presence and learner satisfaction was measured by the survey modified by Richardson and Swan (2003). Likert scale was used to measure survey responses. Anticipated Results: Data would be analyzed and the paper would be completed by draft paper submission. As the course under study is a flipped and active course with a significant component of group work, the anticipated results after analysis could be that one mode of instruction has higher student learning, social presence, and learner satisfaction compared to the other.« less
  2. The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games,more »feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms.« less
  3. The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games,more »feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms.« less
  4. Additive manufacturing (AM) is prevalent in academic, industrial, and layperson use for the design and creation of objects via joining materials together in a layer upon layer fashion. However, few universities have an undergraduate course dedicated to it. Thus, using NSF IUSE support [grant number redacted for review] from the Exploration and Design Tier of the Engaged Student Learning Track, this project has created and implemented such a course at three large universities: Texas Tech (a Carnegie high research productivity and Hispanic Serving Institution), Kansas State (a Carnegie high research productivity and land grant university) and California State, Northridge (themore »largest of all the California State campuses and highly ranked in serving underprivileged students). Our research team includes engineering professors and a sociologist trained in assessment and K-12 outreach to determine the effects of the course on the undergraduate and high school students. We are currently in year two of the three years of NSF support. The course focuses on the fundamentals of the three families of prevailing AM processes: extrusion-based, powder-based, and liquid-based, as well as learning about practical solutions to additive manufacturing of common engineering materials including polymers, metals and alloys, ceramics, and composites. It has a lecture plus lab format, in that students learn the fundamentals in a classroom, but then apply and broaden their knowledge in lab projects and independent studies. Additionally, as outreach, we host field trips from local high schools during which the undergraduates give presentations about discrete AM skills, then lead the high school students through a lab project focused on those skills. This creates a pipeline of knowledge about AM for younger students as well as an opportunity for undergraduates to develop leadership and speaking skills while solidifying their knowledge. We are also in the process of uploading videos and lab projects to an online Google Classroom so that those with access to 3D printers in other areas can learn online for free. We are also self-publishing an accompanying textbook and lab manual. Beyond the course itself, one of the innovations of our project is the assessment strategy. For both undergraduates and high school students, we have been able to collect content area knowledge both before and after the class, as well as information about their attitudes towards engineering and self-efficacy beliefs. This has been particularly illuminating in regards to subgroups like women and students of color. Our research questions include: i) what is the knowledge growth about AM during this course? ii) does this differ by university? iii) does this differ by gender or race? iv) what are the best ways to make this course portable to other universities? Preliminary results indicate a statistically significant improvement in knowledge for all students. This was particularly true for women, which may indicate the promise of AM courses in decreasing the female dropout rate in engineering. Attitudes towards engineering and self-efficacy perceptions also differed after the class, but in varying ways by demographic subgroups and university. This will be explored more in the paper.« less
  5. We present GhostAR, a time-space editor for authoring and acting Human-Robot-Collaborative (HRC) tasks in-situ. Our system adopts an embodied authoring approach in Augmented Reality (AR), for spatially editing the actions and programming the robots through demonstrative role-playing. We propose a novel HRC workflow that externalizes user’s authoring as demonstrative and editable AR ghost, allowing for spatially situated visual referencing, realistic animated simulation, and collaborative action guidance. We develop a dynamic time warping (DTW) based collaboration model which takes the real-time captured motion as inputs, maps it to the previously authored human actions, and outputs the corresponding robot actions to achievemore »adaptive collaboration. We emphasize an in-situ authoring and rapid iterations of joint plans without an offline training process. Further, we demonstrate and evaluate the effectiveness of our workflow through HRC use cases and a three-session user study.« less