skip to main content


Title: GhostAR: A Time-space Editor for Embodied Authoring of Human-Robot Collaborative Task with Augmented Reality
We present GhostAR, a time-space editor for authoring and acting Human-Robot-Collaborative (HRC) tasks in-situ. Our system adopts an embodied authoring approach in Augmented Reality (AR), for spatially editing the actions and programming the robots through demonstrative role-playing. We propose a novel HRC workflow that externalizes user’s authoring as demonstrative and editable AR ghost, allowing for spatially situated visual referencing, realistic animated simulation, and collaborative action guidance. We develop a dynamic time warping (DTW) based collaboration model which takes the real-time captured motion as inputs, maps it to the previously authored human actions, and outputs the corresponding robot actions to achieve adaptive collaboration. We emphasize an in-situ authoring and rapid iterations of joint plans without an offline training process. Further, we demonstrate and evaluate the effectiveness of our workflow through HRC use cases and a three-session user study.  more » « less
Award ID(s):
1839971 1637961
NSF-PAR ID:
10128233
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
UIST '19 Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology
Page Range / eLocation ID:
521 to 534
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Robots are increasingly being employed for diverse applications where they must work and coexist with humans. The trust in human–robot collaboration (HRC) is a critical aspect of any shared-task performance for both the human and the robot. The study of a human-trusting robot has been investigated by numerous researchers. However, a robot-trusting human, which is also a significant issue in HRC, is seldom explored in the field of robotics. Motivated by this gap, we propose a novel trust-assist framework for human–robot co-carry tasks in this study. This framework allows the robot to determine a trust level for its human co-carry partner. The calculations of this trust level are based on human motions, past interactions between the human–robot pair, and the human’s current performance in the co-carry task. The trust level between the human and the robot is evaluated dynamically throughout the collaborative task, and this allows the trust to change if the human performs false positive actions, which can help the robot avoid making unpredictable movements and causing injury to the human. Additionally, the proposed framework can enable the robot to generate and perform assisting movements to follow human-carrying motions and paces when the human is considered trustworthy in the co-carry task. The results of our experiments suggest that the robot effectively assists the human in real-world collaborative tasks through the proposed trust-assist framework. 
    more » « less
  2. Background: The increasing prevalence of robots in industrial environments is attributed in part to advancements in collaborative robot technologies, enabling robots to work in close proximity to humans. Simultaneously, the rise of teleoperation, involving remote robot control, poses unique opportunities and challenges for human-robot collaboration (HRC) in diverse and distributed workspaces. Purpose: There is not yet a comprehensive understanding of HRC in teleoperation, specifically focusing on collaborations involving the teleoperator, the robot, and the local or onsite workers in industrial settings, here referred to as teleoperator-robot-human collaboration (tRHC). We aimed to identify opportunities, challenges, and potential applications of tRHC through insights provided from industry stakeholders, thereby supporting effective future industrial implementations. Methods: Thirteen stakeholders in robotics, specializing in different domains (i.e., safety, robot manufacturing, aerospace/automotive manufacturing, and supply chains), completed semi-structured interviews that focused on exploring diverse aspects relevant to tRHC. The interviews were then transcribed and thematic analysis was applied to group responses into broader categories, which were further compared across stakeholder industries. Results We identified three main categories and 13 themes from the interviews. These categories include Benefits, Concerns, and Technical Challenges. Interviewees highlighted accessibility, ergonomics, flexibility, safety, time & cost saving, and trust as benefits of tRHC. Concerns raised encompassed safety, standards, trust, and workplace optimization. Technical challenges consisted of critical issues such as communication time delays, the need for high dexterity in robot manipulators, the importance of establishing shared situational awareness among all agents, and the potential of augmented and virtual reality in providing immersive control interfaces. Conclusions: Despite important challenges, tRHC could offer unique benefits, facilitating seamless collaboration among the teleoperator, teleoperated robot(s), and onsite workers across physical and geographic boundaries. To realize such benefits and address the challenges, we propose several research directions to further explore and develop tRHC capabilities. 
    more » « less
  3. null (Ed.)
    Augmented Reality (AR) has become a valuable tool for education and training processes. Meanwhile, cloud-based technologies can foster collaboration and other interaction modalities to enhance learning. We combine the cloud capabilities with AR technologies to present Meta-AR-App, an authoring platform for collaborative AR, which enables authoring between instructors and students. Additionally, we introduce a new application of an established collaboration process, the pull-based development model, to enable sharing and retrieving of AR learning content. We customize this model and create two modalities of interaction for the classroom: local (student to student) and global (instructor to class) pull. Based on observations from our user studies, we organize a four-category classroom model which implements our system: Work, Design, Collaboration, and Technology. Further, our system enables an iterative improvement workflow of the class content and enables synergistic collaboration that empowers students to be active agents in the learning process. 
    more » « less
  4. We present V.Ra, a visual and spatial programming system for robot-IoT task authoring. In V.Ra, programmable mobile robots serve as binding agents to link the stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently connects the three key elements of robot task planning , the human, robot and IoT, with one single mobile AR device. Users can perform task authoring with the Augmented Reality (AR) handheld interface, then placing the AR device onto the mobile robot directly transfers the task plan in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device mediates the interactions between the user, robot, and the IoT oriented tasks, and guides the path planning execution with the embedded simultaneous localization and mapping (SLAM) capability. We demonstrate that V.Ra enables instant, robust and intuitive room-scale navigatory and interactive task authoring through various use cases and preliminary studies. 
    more » « less
  5. Objective

    This study investigated the effects of different approach directions, movement speeds, and trajectories of a co-robot’s end-effector on workers’ mental stress during handover tasks.

    Background

    Human–robot collaboration (HRC) is gaining attention in industry and academia. Understanding robot-related factors causing mental stress is crucial for designing collaborative tasks that minimize workers’ stress.

    Methods

    Mental stress in HRC tasks was measured subjectively through self-reports and objectively through galvanic skin response (GSR) and electromyography (EMG). Robot-related factors including approach direction, movement speed, and trajectory were analyzed.

    Results

    Movement speed and approach direction had significant effects on subjective ratings, EMG, and GSR. High-speed and approaching from one side consistently resulted in higher fear, lower comfort, and predictability, as well as increased EMG and GSR signals, indicating higher mental stress. Movement trajectory affected GSR, with the sudden stop condition eliciting a stronger response compared to the constrained trajectory. Interaction effects between speed and approach direction were observed for “surprise” and “predictability” subjective ratings. At high speed, approach direction did not significantly differ, but at low speeds, approaching from the side was found to be more surprising and unpredictable compared to approaching from the front.

    Conclusion

    The mental stress of workers during HRC is lower when the robot’s end effector (1) approaches a worker within the worker’s field of view, (2) approaches at a lower speed, or (3) follows a constrained trajectory.

    Application

    The outcome of this study can serve as a guide to design HRC tasks with a low level of workers’ mental stress.

     
    more » « less