skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vipo: Spatial-Visual Programming with Functions for Robot-IoT Workflows
Mobile robots and IoT (Internet of Things) devices can increase productivity, but only if they can be programmed by workers who understand the domain. This is especially true in manufacturing. Visual programming in the spatial context of the operating environment can enable mental models at a familiar level of abstraction. However, spatial-visual programming is still in its infancy; existing systems lack IoT integration and fundamental constructs, such as functions, that are essential for code reuse, encapsulation, or recursive algorithms. We present Vipo, a spatial-visual programming system for robot-IoT workflows. Vipo was designed with input from managers at six factories using mobile robots. Our user study (n=22) evaluated efficiency, correctness, comprehensibility of spatial-visual programming with functions.  more » « less
Award ID(s):
1839971
PAR ID:
10200087
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present V.Ra, a visual and spatial programming system for robot-IoT task authoring. In V.Ra, programmable mobile robots serve as binding agents to link the stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently connects the three key elements of robot task planning (human-robot-IoT) with one single AR-SLAM device. Users can perform task authoring in an analogous manner with the Augmented Reality (AR) interface. Then placing the device onto the mobile robot directly transfers the task plan in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device mediates the interactions between the user, robot and IoT oriented tasks, and guides the path planning execution with the SLAM capability. 
    more » « less
  2. We present V.Ra, a visual and spatial programming system for robot-IoT task authoring. In V.Ra, programmable mobile robots serve as binding agents to link the stationary IoTs and perform collaborative tasks. We establish an ecosystem that coherently connects the three key elements of robot task planning , the human, robot and IoT, with one single mobile AR device. Users can perform task authoring with the Augmented Reality (AR) handheld interface, then placing the AR device onto the mobile robot directly transfers the task plan in a what-you-do-is-what-robot-does (WYDWRD) manner. The mobile device mediates the interactions between the user, robot, and the IoT oriented tasks, and guides the path planning execution with the embedded simultaneous localization and mapping (SLAM) capability. We demonstrate that V.Ra enables instant, robust and intuitive room-scale navigatory and interactive task authoring through various use cases and preliminary studies. 
    more » « less
  3. The testbed presented in this study supplies various devices to emulate a smart home. The paper highlights how devices can be connected and programmed to perform functions using an application programming interface. Remote-controlled robots in the testbed enable a user to manipulate, monitor, and configure home-based Internet-of-Things (IoT) technologies. The paper describes the equipment used in the testbed, including a wireless security camera, a smart lock, a climate sensor, and two types of robots. Security measures implemented in the testbed are also discussed. Several application scenarios are presented and analyzed on how they were accomplished to demonstrate the functionalities. The smart home testbed is a useful resource for education and development, as it allows for sufficient performance using a single control point. 
    more » « less
  4. Freehand gesture is an essential input modality for modern Augmented Reality (AR) user experiences. However, developing AR applications with customized hand interactions remains a challenge for end-users. Therefore, we propose GesturAR, an end-to-end authoring tool that supports users to create in-situ freehand AR applications through embodied demonstration and visual programming. During authoring, users can intuitively demonstrate the customized gesture inputs while referring to the spatial and temporal context. Based on the taxonomy of gestures in AR, we proposed a hand interaction model which maps the gesture inputs to the reactions of the AR contents. Thus, users can author comprehensive freehand applications using trigger-action visual programming and instantly experience the results in AR. Further, we demonstrate multiple application scenarios enabled by GesturAR, such as interactive virtual objects, robots, and avatars, room-level interactive AR spaces, embodied AR presentations, etc. Finally, we evaluate the performance and usability of GesturAR through a user study. 
    more » « less
  5. Video and animation are common ways of delivering concepts that cannot be easily communicated through text. This visual information is often inaccessible to blind and visually impaired people, and alternative representations such as Braille and audio may leave out important details. Audio-haptic displays with along with supplemental descriptions allow for the presentation of complex spatial information, along with accompanying description. We introduce the Haptic Video Player, a system for authoring and presenting audio-haptic content from videos. The Haptic Video Player presents video using mobile robots that can be touched as they move over a touch screen. We describe the design of the Haptic Video Player system, and present user studies with educators and blind individuals that demonstrate the ability of this system to render dynamic visual content non-visually. 
    more » « less