skip to main content


Title: Undergraduate Summer Research in High-performance Computing with Engineering Applications: An Experience Report
High Performance Computing (HPC) stands at the forefront of engineering innovation. With affordable and advanced HPC resources more readily accessible than ever before, computational simulation of complex physical phenomena becomes an increasingly attractive strategy to predict the physical behavior of diverse engineered systems. Furthermore, novel applications of HPC in engineering are highly interdisciplinary, requiring advanced skills in mathematical modeling, algorithm development as well as programming skills for parallel, distributed and concurrent architectures and environments. This and other possible reasons have created a shortage of qualified workforce to conduct the much-needed research and development in these areas. This paper describes our experience with mentoring a cohort of ten high achieving undergraduate students in Summer 2019 to conduct engineering HPC research for ten weeks in X University. Our mentoring activity was informed and motivated by an initial informal study with the goal to learn the roles and status of HPC in engineering research and what can be improved to make more effective use of it. Through a combination of email surveys, in-person interviews, and a manual analysis of faculty research profiles in X University, we learn several lessons. First, a large proportion of the engineering faculty conducts research that is highly mathematical and computational and driven by disciplinary sciences, where simulation and HPC are widely needed as solutions. Second, due to the lack of resources to provide the necessary training in software development to their students, the interviewed engineering groups are limited in their ability to fully leveraging HPC capability in their research. Therefore, novel pathways for training and educating engineering researchers in HPC software development must be explored in order to further advance the engineering research capability in HPC. With a multi-year support from NSF, our summer research mentoring activities were able to accommodate ten high-achieving undergraduate students recruited from across the USA and their faculty mentors on the theme of HPC applications in engineering research. We describe the processes of students recruitment and selection, training and engagement, research mentoring, and professional development for the students. Best practices and lessons learned are identified and summarized based on our own observations and the evaluation conducted by an independent evaluator. In particular, improvements are being planned so as to deliver a more wholistic and rigorous research experience for future cohorts.  more » « less
Award ID(s):
1852102
NSF-PAR ID:
10200372
Author(s) / Creator(s):
Date Published:
Journal Name:
2020 American Society for Engineering Education (ASEE) Virtual Annual Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This S_STEM project is designed to support the retention and graduation of high-achieving, low income students with demonstrated financial need at Baylor University. Over its five-year duration, this project will fund four-year scholarships to 22 students who are pursuing Bachelor degrees in Engineering, Electrical and Computer Engineering, Mechanical Engineering and Computer Science. Engineering and Computer Science (ECS) Scholars will participate in activities which include an orientation, a monthly seminar series and required faculty mentoring. Support services and activities for ECS Scholars build upon existing activities at Baylor and feature peer mentoring, study abroad opportunities, alumni mentoring, support and training for undergraduate research, professional development workshops, and tutoring support from the ECS Learning Resource Center. A distinguishing feature of the project is the use of EAB’s Navigate, a web-based software platform for tracking student progress, coordinating student care and employing predictive analytics. The expertise generated using a student dashboard capable of predictive analytics will have the broad impact of informing the STEM community of best practices for timely interventions, and improving retention and graduation rates. The Navigate platform is used for predictive analytics and to track and document ECS Scholar progress toward achieving benchmark goals in the areas of retention, graduation rates, internships, undergraduate research experiences, and job placement. The use of predictive analytics has significant potential for helping students arrive at successful outcomes. However, it is an assumption of this project that the successful use of predictive analytics should take into consideration not simply the accuracy in identifying students who are struggling but in the social attributions of success and perceptions of a “big data” tool that might be received alternatively with enthusiasm or suspicion. The focus of this paper will be to give an overview of our first-year results from the project. We were successful in recruiting the full first cohort that began in the Fall of 2020. For the first year, many of the engagement sessions with the students pivoted to a virtual experience, however, we were able to manage several events that fostered a sense of community among the ECS scholars. Our research partners from the Baylor School of Education were successful in conducting baseline qualitative research using detailed interviews with an initial focus on community fit, academic fit and faculty relationships. The paper will also summarize our use of the Navigate platform and the lessons learned in the areas of data capture and interventions. 
    more » « less
  2. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented. 
    more » « less
  3. The STEM Excellence through Engagement in Collaboration, Research, and Scholarship (SEECRS) project at Whatcom Community College is a five-year program aiming to support academically talented students with demonstrated financial need in biology, chemistry, geology, computer science, engineering, and physics. This project is funded by an NSF S-STEM (Scholarships in Science, Technology, Engineering, and Mathematics) grant awarded in January 2017. Through an inclusive and long-range effort, the college identified a strong need for financial and comprehensive supports for STEM students. This project will offer financial, academic, and professional support to three two-year cohorts of students. The SEECRS project aims to utilize a STEM-specific guided pathways approach to strengthen recruitment, retention, and matriculation of STEM students at the community college level. Scholarship recipients will be supported through participation in the SEECRS Scholars Academy, a multi-pronged approach to student support combining elements of community building, faculty mentorship, targeted advising activities, authentic science practice, and social activities. Students are introduced to disciplines of interest through opportunities to engage in course-based undergraduate research experiences (CUREs) in Biology, Chemistry and Engineering courses, funded summer research opportunities, and seminars presented by STEM professionals. Communities of practice will be nurtured through the introduction of cohort building and faculty mentorship. Cohort development starts with a required two-credit course for all scholars that emphasizes STEM identity development, specifically focusing on identifying and coping with the ways non-dominant individuals (racial/ethnic minorities, non-male gender, lower socioeconomic status, first-generation, 2-year community college vs. 4-year institutions) are made to feel as outsiders in STEM. Each SEECRS scholar is paired with a faculty mentor who engages in ongoing mentor training. The project evaluation will determine the efficacy of the project activities in achieving their intended outcomes. Specifically, we will collect data to answer the research question: To what extent can a guided pathways approach provide a coordinated and supported STEM experience at Whatcom Community College that: (1) increases student success, and (2) positively shifts students’ STEM self-identity? The evaluation will employ a quasi-experimental research design, specifically a pretest-posttest design with a matched comparison group. Our first cohort of 14 students was selected over two application rounds (winter and summer 2017). We awarded ten full scholarships and four half-scholarships based on financial need data. Cohort demographics of note compared to institutional percentages are: females (64% vs. 57%), Hispanic (14% vs. 17%), African American (7% vs. 2%), white (79% vs. 66%), first generation college bound (43% vs. 37%). The cohort is comprised of six students interested in engineering, six in biology, and one each in geology and environmental sciences. With increased communication between the project team, our Financial Aid office, Entry and Advising, high school outreach, and the Title III grant-funded Achieve, Inspire, Motivate (AIM) Program, as well as a longer advertising time, we anticipate significantly enhancing our applicant pool for the next cohort. The results and lessons learned from our first year of implementation will be presented. 
    more » « less
  4. null (Ed.)
    STEM (science, technology, engineering, mathematics) graduate programs excel at developing students’ technical expertise and research skills. The interdisciplinary nature of many STEM research projects means that graduate students often find themselves paired with experts from other fields and asked to work together to solve complex problems. At Michigan State University, the College of Engineering has developed a graduate level course that helps students build professional skills (communications, teamwork, leadership) to enhance their participation in these types of interdisciplinary projects. This semester-long course also includes training on research mentoring, helping students work more effectively with their current faculty mentors and build skills to serve as mentors themselves. Discussions of research ethics are integrated throughout the course, which allows participants to partially fulfill graduate training requirements in the responsible conduct of research. This paper will discuss the development of this course, which is based in part on curriculum developed as part of an ongoing training grant from the National Science Foundation. 18 graduate students from Engineering and other STEM disciplines completed the course in Spring 2019, and we will present data gathered from these participants along with lessons learned and suggestions for institutions interested in adapting these open-source curriculum materials for their own use. Students completed pre- and post-course evaluations, which asked about their expectations and reasons for participating in the course at the outset and examined their experiences and learning at the end. Overall, students reported that the course content was highly relevant to their daily work and that they were highly satisfied with the content of all three major focus areas (communications, teamwork, leadership). Participants also reported that the structure and the pacing of the course were appropriate, and that the experience had met their expectations. The results related to changes in students’ knowledge indicate that the course was effective in increasing participants understanding of and ability to employ professional skills for communications, teamwork and leadership. Statistical analyses were conducted by creating latent constructs for each item as applicable and then running paired t-tests. The evaluation also demonstrated increases in students’ interest, knowledge and confidence of the professional skills offered in the course. 
    more » « less
  5. Community colleges (CCs) play a critical role in advancing the education of all learners. Approximately 40% of first-time college freshman begin in Community Colleges. The proposed framework seeks to support and excite CC students to persist in their STEM education to increase the pipeline for the STEM workforce. Its vision is to provide CC students engineering skills and to excite them about engineering research. The framework enables students to spend 10 summer weeks at Northeastern University to increase skills, confidence, and learn firsthand about research. Each student will join a research lab, working with faculty and graduate student mentors. Also, students will be mentored after summer to further support their successful graduation and/or transfer to a 4-year institution and beyond. The site is guided by two of the grand challenges of the National Academy of Engineering: personalized learning and scientific discovery. Unique aspects of the proposed framework include: a hands-on short course in engineering topics and software tools; formal mentor training including modules for mentoring CC students; daily student meetings with mentors; extensive professional development seminars; formal research training including daily reflection journals, poster presentations and technical writing with a faculty member; and recruitment from a unique pool of highly talented URM students. 
    more » « less