- Award ID(s):
- 1832016
- PAR ID:
- 10200376
- Date Published:
- Journal Name:
- Cities
- Volume:
- 107
- Issue:
- C
- ISSN:
- 0264-2751
- Page Range / eLocation ID:
- 102886
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)We introduce the task ofstory fragment stitching,which is the process of automatically aligning andmerging event sequences of partial tellings of astory (i.e.,story fragments). We assume that eachfragment contains at least one event from the storyof interest, and that every fragment shares at leastone event with another fragment. We propose agraph-based unsupervised approach to solving thisproblem in which events mentions are representedas nodes in the graph, and the graph is compressedusing a variant of model merging to combine nodes.The goal is for each node in the final graph to con-tain only coreferent event mentions. To find coref-erent events, we use BERT contextualized embed-ding in conjunction with atf-idfvector representa-tion. Constraints on the merge compression pre-serve the overall timeline of the story, and the finalgraph represents the full story timeline. We evalu-ate our approach using a new annotated corpus ofthe partial tellings of the story of Moses found inthe Quran, which we release for public use. Ourapproach achieves a performance of 0.63F1scoremore » « less
-
Summary The genus
Quercus is among the most widespread and species‐rich tree genera in the northern hemisphere. The extraordinary species diversity in America and Asia together with the continuous continental distribution of a limited number of European species raise questions about how macro‐ and microevolutionary processes made the genusQuercus an evolutionary success. Synthesizing conclusions reached during the past three decades by complementary approaches in phylogenetics, phylogeography, genomics, ecology, paleobotany, population biology and quantitative genetics, this review aims to illuminate evolutionary processes leading to the radiation and expansion of oaks. From opposing scales of time and geography, we converge on four overarching explanations of evolutionary success in oaks: accumulation of large reservoirs of diversity within populations and species; ability for rapid migration contributing to ecological priority effects on lineage diversification; high rates of evolutionary divergence within clades combined with convergent solutions to ecological problems across clades; and propensity for hybridization, contributing to adaptive introgression and facilitating migration. Finally, we explore potential future research avenues, emphasizing the integration of microevolutionary and macroevolutionary perspectives.