skip to main content


Search for: All records

Award ID contains: 1832016

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Introduction

    Human-wildlife coexistence in cities depends on how residents perceive and interact with wildlife in their neighborhoods. An individual’s attitudes toward and responses to wildlife are primarily shaped by their subjective cognitive judgments, including multi-faceted environmental values and perceptions of risks or safety. However, experiences with wildlife could also positively or negatively affect an individual’s environmental attitudes, including their comfort living near wildlife. Previous work on human-wildlife coexistence has commonly focused on rural environments and on conflicts with individual problem species, while positive interactions with diverse wildlife communities have been understudied.

    Methods

    Given this research gap, we surveyed wildlife attitudes of residents across twelve neighborhoods in the Phoenix Metropolitan Area, AZ to ask: how do the environments in which residents live, as well as their values, identities, and personal characteristics, explain the degree to which they are comfortable living near different wildlife groups (coyotes, foxes, and rabbits)?

    Results

    We found that residents who were more comfortable living near wildlife commonly held pro-wildlife value orientations, reflecting the expectation that attitudes toward wildlife are primarily driven be an individual’s value-based judgements. However, attitudes were further influenced by sociodemographic factors (e.g., pet ownership, gender identity), as well as environmental factors that influence the presence of and familiarity with wildlife. Specifically, residents living closer to desert parks and preserves were more likely to have positive attitudes toward both coyotes and foxes, species generally regarded by residents as riskier to humans and domestic animals.

    Discussion

    By improving understanding of people’s attitudes toward urban wildlife, these results can help managers effectively evaluate the potential for human-wildlife coexistence through strategies to mitigate risk and facilitate stewardship.

     
    more » « less
    Free, publicly-accessible full text available November 2, 2024
  2. Abstract

    Our urban systems and their underlying sub-systems are designed to deliver only a narrow set of human-centered services, with little or no accounting or understanding of how actions undercut the resilience of social-ecological-technological systems (SETS). Embracing a SETS resilience perspective creates opportunities for novel approaches to adaptation and transformation in complex environments. We: i) frame urban systems through a perspective shift from control to entanglement, ii) position SETS thinking as novel sensemaking to create repertoires of responses commensurate with environmental complexity (i.e., requisite complexity), and iii) describe modes of SETS sensemaking for urban system structures and functions as basic tenets to build requisite complexity. SETS sensemaking is an undertaking to reflexively bring sustained adaptation, anticipatory futures, loose-fit design, and co-governance into organizational decision-making and to help reimagine institutional structures and processes as entangled SETS.

     
    more » « less
  3. Abstract

    Understanding the chemical composition of our planet's crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro‐ and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome‐dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling‐atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  4. Abstract

    The “dimensional stability” approach measures different components of ecological stability to investigate how they are related. Yet, most empirical work has used small‐scale and short‐term experimental manipulations. Here, we apply this framework to a long‐term observational dataset of stream macroinvertebrates sampled between the winter flooding and summer monsoon seasons. We test hypotheses that relate variation among stability metrics across different taxa, the magnitude of antecedent (monsoon) and immediate (winter) floods to stability metrics, and the relative importance of disturbance magnitude and taxonomic richness on community dimensional stability. Cluster analysis revealed four distinct stability types, and we found that the magnitude of floods during the prior monsoon was more important in influencing stability than the winter flood itself. For dimensional stability at the community level, taxonomic richness was more important than disturbance magnitude. This work demonstrates that abiotic and biotic factors determine dimensional stability in a natural ecosystem.

     
    more » « less
  5. abstract

    Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.

     
    more » « less
  6. Abstract

    The impacts of urbanization on bird biodiversity depend on human–environment interactions that drive land management. Although a commonly studied group, less attention has been given to public perceptions of birds close to home, which can capture people's direct, everyday experiences with urban biodiversity. Here, we used ecological and social survey data collected in the metropolitan region of Phoenix, Arizona, USA, to determine how species traits are related to people's perceptions of local bird communities. We used a trait‐based approach to classify birds by attributes that may influence human–bird interactions, including color, size, foraging strata, diet, song, and cultural niche space based on popularity and geographic specificity. Our classification scheme using hierarchical clustering identified four trait categories, labeled as Metropolitan (gray, loud, seedeaters foraging low to ground), Familiar (yellow/brown generalist species commonly present in suburban areas), Distinctive (species with distinguishing appearance and song), and Hummingbird (hummingbird species, small and colorful). Strongly held beliefs about positive or negative traits were also more consistent than ambivalent ones. The belief that birds were colorful and unique to the regional desert environment was particularly important in fortifying perceptions. People largely perceived hummingbird species and birds with distinctive traits positively. Similarly, urban‐dwelling birds from the metropolitan trait group were related to negative perceptions, probably due to human–wildlife conflict. Differences arose across sociodemographics (including income, age, education, and Hispanic/Latinx identity), but explained a relatively low amount of variation in perceptions compared with the bird traits present in the neighborhood. Our results highlight how distinctive aesthetics, especially color and song, as well as traits related to foraging and diet drive perceptions. Increasing people's direct experiences with iconic species tied to the region and species with distinguishing attributes has the potential to improve public perceptions and strengthen support for broader conservation initiatives in and beyond urban ecosystems.

     
    more » « less
  7. Abstract

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) both require low oxygen and high organic carbon conditions common in wetland ecosystems. Denitrification permanently removes nitrogen from the ecosystem as a gas while DNRA recycles nitrogen within the ecosystem via production of ammonium. The relative prevalence of denitrification versus DNRA has implications for the fate of nitrate in ecosystems. Unplanned and unmanaged urban accidental wetlands in the Salt River channel near downtown Phoenix, Arizona, USA receive high nitrate relative to non‐urban wetlands and have a high capacity for denitrification, but unknown capacity for DNRA. We conducted in‐situ push‐pull tests with isotopically labeled nitrate to measure denitrification and DNRA rates in three of the dominant vegetative patch types in these urban accidental wetlands. DNRA accounted for between 2% and 40% of nitrate reduction (DNRA plus denitrification) with the highest rates measured in patches ofLudwigia peploidescompared toTypha spp. and non‐vegetated patches. The wetland patches were similar with respect to dissolved organic carbon concentration but may have differed in carbon lability or strength of reducing conditions due to a combination of litter decomposition and oxygen supply via diffusion and aerenchyma. The ratio of DNRA to denitrification was negatively correlated with nitrate concentration, indicating that DNRA may become a more important pathway for nitrate attenuation at low nitrate concentration. Although DNRA was generally lower than denitrification, this pathway was an important component of nitrate attenuation within certain patches in these unmanaged urban accidental wetlands.

     
    more » « less
  8. Abstract

    Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood‐scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife‐certified and water conservation) and two lawn‐dominated yard types (high‐ and low‐fertilizer application), and surrounding neighborhood‐scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood‐scale tree canopy cover and negatively associated with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high‐fertilizer yards and highest in wildlife‐certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife‐friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes.

     
    more » « less
  9. Abstract

    Land‐use transformation is one of the most important and pervasive ecological changes occurring across the Earth, but its long‐term effects are poorly understood. Here, we analyze the effects of urban and agriculture development on bird biodiversity and community structure over a 16‐yr study period. We found that long‐term effects of land‐use change are dependent on spatial scale and land‐use type. At the regional scale, we found that gamma diversity (total number of species observed) declined by ~10% over time. At the landscape spatial scale, we found that beta diversity (uniqueness of bird communities) increased by ~16% over time. Additionally, the average contributions of urban riparian bird communities to beta diversity were generally the highest but declined by ~26% over the study period. Contributions of urban communities to beta diversity were generally the lowest but increased by ~10% over time. At the local scale, we observed different responses for different measures of alpha diversity. For bird species richness, temporal changes varied by land use. Species richness declined 16% at sites in desert riparian areas but increased by 21% and 12% at sites in urban and agricultural areas, respectively. Species evenness declined across all land uses, with some land uses experiencing more rapid declines than others. Our analysis of species groups that shared certain traits suggests that these community‐level changes were driven by species that are small, breed onsite, and feed on insects, grains, and nectar. Collectively, our results suggest that biodiversity declines associated with land‐use change predominate at the regional and local spatial scale, and that these effects can strengthen or weaken over time. However, these changes counterintuitively led to increases in biodiversity at the landscape scale, as bird communities became more unique. This has implications for conservation and management as it shows that the effects of land‐use modification on biodiversity may be positive or negative depending on the spatial scale considered.

     
    more » « less
  10. Abstract

    Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation‐funded Long‐Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long‐term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi‐scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land‐use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long‐term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long‐term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies.

     
    more » « less