skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: All-Sky Imager Observations of the Latitudinal Extent and Zonal Motion of Magnetically Conjugate 630.0 nm Airglow Depletions
630.0 nm all-sky imaging data are used to detect airglow depletions associated with equatorial spread F. Pairs of imagers located at geomagnetically conjugate locations in the American sector at low and mid-latitudes provide information on the occurrence rate and zonal motion of airglow depletions. Airglow depletions are seen extending to magnetic latitudes as high as 25°. An asymmetric extension is observed with structures in the northern hemisphere reaching higher latitudes. By tracking the zonal motion of airglow depletions, zonal plasma drifts in the thermosphere can be inferred and their simultaneous behavior in both hemispheres investigated. Case studies using El Leoncito and Mercedes imagers in the southern hemisphere, and the respective magnetically conjugate imagers at Villa de Leyva and Arecibo, provide consistent evidence of the influence of the South Atlantic Magnetic Anomaly on the dynamics and characteristics of the thermosphere–ionosphere system at low and mid-latitudes.  more » « less
Award ID(s):
1659304
PAR ID:
10200490
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Atmosphere
Volume:
11
Issue:
6
ISSN:
2073-4433
Page Range / eLocation ID:
642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract All‐sky imagers located in Asiago, Italy (45.87oN, 11.53oE; 40.7omagnetic latitude) and Sutherland, South Africa (32.37oS, 20.81oE; −40.7omagnetic latitude) are used to study magnetically conjugate medium scale traveling ionospheric disturbances (MSTIDs). We present initial results from the first year of joint Asiago‐Sutherland data sets from July 2016 to June 2017. The 630.0‐nm airglow perturbations showing different kinds of waves were frequently observed. Some of these wave events resemble MSTIDs propagating south‐westward in Asiago, typical direction observed at other longitude sectors in the northern hemisphere. They are mostly observed as single bands propagating through the field of view of the all‐sky imagers. We select and analyze five cases of magnetically conjugate bands associated with MSTIDs. The bands observed at Sutherland move mainly westward, noticeably different from the north‐west direction of propagation of MSTIDs observed in the southern hemisphere. We compare the MSTIDs propagation speeds and find that three cases show larger values at Sutherland. When we compare the zonal speeds all the cases show larger values at Sutherland. On average, the propagation speed at Sutherland is 20% larger and the zonal speed is ~35% larger. The westward motion at Sutherland is explained by taking onto account how its magnetic declination (~24oW) affects the orientation of the bands. The larger speed at Sutherland is due to the weaker Earth's magnetic field in the southern hemisphere and the particular configuration of the magnetic field lines in this longitude sector. 
    more » « less
  2. Abstract. In March 2014 an all-sky imager (ASI) was installed at the Jicamarca Radio Observatory (11.95°S, 76.87°W; 0.3°S MLAT). We present results of equatorial spread F (ESF) characteristics observed at Jicamarca and at low latitudes. Optical 6300 and 7774Å airglow observations from the Jicamarca ASI are compared with other collocated instruments and with ASIs at El Leoncito, Argentina (31.8°S, 69.3°W; 19.8°S MLAT), and Villa de Leyva, Colombia (5.6°N, 73.52°W; 16.4°N MLAT). We use Jicamarca radar data, in incoherent and coherent modes, to obtain plasma parameters and detect echoes from irregularities. We find that ESF depletions tend to appear in groups with a group-to-group separation around 400–500km and within-group separation around 50–100km. We combine data from the three ASIs to investigate the conditions at Jicamarca that could lead to the development of high-altitude, or topside, plumes. We compare zonal winds, obtained from a Fabry–Pérot interferometer, with plasma drifts inferred from the zonal motion of plasma depletions. In addition to the ESF studies we also investigate the midnight temperature maximum and its effects at higher latitudes, visible as a brightness wave at El Leoncito. The ASI at Jicamarca along with collocated and low-latitude instruments provide a clear two-dimensional view of spatial and temporal evolution of ionospheric phenomena at equatorial and low latitudes that helps to explain the dynamics and evolution of equatorial ionospheric/thermospheric processes. 
    more » « less
  3. Abstract The Mid‐latitude All‐sky‐imaging Network for Geophysical Observations (MANGO) employs a combination of two powerful optical techniques used to observe the dynamics of Earth's upper atmosphere: wide‐field imaging and high‐resolution spectral interferometry. Both techniques observe the naturally occurring airglow emissions produced in the upper atmosphere at 630.0‐ and 557.7‐nm wavelengths. Instruments are deployed to sites across the continental United States, providing the capability to make measurements spanning mid to sub‐auroral latitudes. The current instrument suite in MANGO has six all‐sky imagers (ASIs) observing the 630.0‐nm emission (integrated between ∼200 and 400 km altitude), six ASIs observing the 557.7‐nm emission (integrated between ∼90 and 100 km altitude), and four Fabry‐Perot interferometers measuring neutral winds and temperature at these wavelengths. The deployment of additional imagers is planned. The network makes unprecedented observations of the nighttime thermosphere‐ionosphere dynamics with the expanded field‐of‐view provided by the distributed network of instruments. This paper describes the network, the instruments, the data products, and first results from this effort. 
    more » « less
  4. Abstract Low‐cost instrumentation combined with volunteering and citizen science educational initiatives allowed the deployment of L‐band scintillation monitors to remote sense areas that are geomagnetically conjugated and located at low‐to‐mid latitudes in the American sector (Quebradillas in Puerto Rico and Santa Maria in Brazil). On 10 and 11 October, 2023, both monitors detected severe scintillations, some reaching dip latitudes beyond 26°N. The observations show conjugacy in the spatio‐temporal evolution of the scintillation‐causing irregularities. With the aid of collocated all‐sky airglow imager observations, it was shown that the observed scintillation event was caused by extreme equatorial plasma bubbles (EPBs) reaching geomagnetic apex altitudes exceeding 2,200 km. The observations suggest that geomagnetic conjugate large‐scale structures produced conditions for the development of intermediate scale (few 100 s of meters) in both hemispheres, leading to scintillation at conjugate locations. Finally, unlike previous reports, it is shown that the extreme EPBs‐driven scintillation reported here developed under geomagnetically quiet conditions. 
    more » « less
  5. Abstract This study investigates the global distribution of electron temperature enhancement observed by Defense Meteorological Satellite Program F16 satellite and its dependence on the season and solar activity for the solar maximum (2014) and minimum (2018) years during geomagnetic quiet times (maximum per day ap <10). Electron temperature enhancements occurred mainly over the North American‐Atlantic (260°–360°E) and Eurasia (0°–160°E) (Southern Oceania (80°–280°E)) sector in the Northern (Southern) Hemisphere and are prominent in the winter hemispheres and solar maximum year. They have obvious longitude characteristics. Interestingly, they could extend to geomagnetic equatorial regions in the North American‐Atlantic sector from high to low latitudes in the December Solstice, further crossed the magnetic equator, and merged into the Southern Hemisphere in 2014, where the maximum temperature reached ∼3500 K. Our analysis indicates that low‐energy electrons (<100 eV) associated with photoelectron from the conjugate sunlit hemisphere, can contribute to these enhancements. Furthermore, the local geomagnetic declination, magnetic equator position, and terminator position at magnetic conjugate points together can impact the global distribution of photoelectrons of different energies and therefore the electron temperature enhancement distribution. Other processes (including local electron density variation) may play certain roles as well. 
    more » « less