skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MANGO: An Optical Network to Study the Dynamics of the Earth's Upper Atmosphere
Abstract The Mid‐latitude All‐sky‐imaging Network for Geophysical Observations (MANGO) employs a combination of two powerful optical techniques used to observe the dynamics of Earth's upper atmosphere: wide‐field imaging and high‐resolution spectral interferometry. Both techniques observe the naturally occurring airglow emissions produced in the upper atmosphere at 630.0‐ and 557.7‐nm wavelengths. Instruments are deployed to sites across the continental United States, providing the capability to make measurements spanning mid to sub‐auroral latitudes. The current instrument suite in MANGO has six all‐sky imagers (ASIs) observing the 630.0‐nm emission (integrated between ∼200 and 400 km altitude), six ASIs observing the 557.7‐nm emission (integrated between ∼90 and 100 km altitude), and four Fabry‐Perot interferometers measuring neutral winds and temperature at these wavelengths. The deployment of additional imagers is planned. The network makes unprecedented observations of the nighttime thermosphere‐ionosphere dynamics with the expanded field‐of‐view provided by the distributed network of instruments. This paper describes the network, the instruments, the data products, and first results from this effort.  more » « less
Award ID(s):
1933077 1933013 1932953
PAR ID:
10467985
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A specialized ground‐based system has been developed for simultaneous observations of pulsating aurora (PsA) and related magnetospheric phenomena with the Arase satellite. The instrument suite is composed of (a) six 100 Hz sampling high‐speed all‐sky imagers (ASIs), (b) two 10 Hz sampling monochromatic ASIs observing 427.8 and 844.6 nm auroral emissions, (c) a 20 Hz sampling fluxgate magnetometer. The 100 Hz ASIs were deployed in four stations in Scandinavia and two stations in Alaska, which have been used for capturing the main pulsations and quasi 3 Hz internal modulations of PsA at the same time. The 10 Hz sampling monochromatic ASIs have been operative in Tromsø, Norway with the 20 Hz sampling magnetometer. Combination of these multiple instruments with the European Incoherent SCATter (EISCAT) radar enables us to detect the low‐altitude ionization due to energetic electron precipitation during PsA and further to reveal the ionospheric electrodynamics behind PsA. Since the launch of the Arase satellite, the data from these instruments have been examined in comparison with the wave and particle data from the satellite in the magnetosphere. In the future, the system can be utilized not only for studies of PsA but also for other classes of aurora in close collaboration with the planned EISCAT_3D project. 
    more » « less
  2. null (Ed.)
    630.0 nm all-sky imaging data are used to detect airglow depletions associated with equatorial spread F. Pairs of imagers located at geomagnetically conjugate locations in the American sector at low and mid-latitudes provide information on the occurrence rate and zonal motion of airglow depletions. Airglow depletions are seen extending to magnetic latitudes as high as 25°. An asymmetric extension is observed with structures in the northern hemisphere reaching higher latitudes. By tracking the zonal motion of airglow depletions, zonal plasma drifts in the thermosphere can be inferred and their simultaneous behavior in both hemispheres investigated. Case studies using El Leoncito and Mercedes imagers in the southern hemisphere, and the respective magnetically conjugate imagers at Villa de Leyva and Arecibo, provide consistent evidence of the influence of the South Atlantic Magnetic Anomaly on the dynamics and characteristics of the thermosphere–ionosphere system at low and mid-latitudes. 
    more » « less
  3. Abstract On September 28, 2017 citizen scientist observations at Alberta, Canada (51°N, 113° W) detected aurora and a thin east‐west purplish arc, known as strong thermal emission velocity enhancement (STEVE) that lasted less than 20 min. All‐sky imagers at subauroral latitudes measured stable auroral red (SAR) arcs during the entire night. The imager at Bridger, MT (45.3°N, 108.9°W) also measured a STEVE. The overlapping geometry allowed to determine that the height of STEVE was 225–275 km. STEVE is brighter in the 630.0 nm images in the West and almost merges with the SAR arc in the East. A DMSP satellite pass in the southern hemisphere was at the conjugate location of the Bridger imager during the STEVE observation. When mapped into the northern hemisphere intense subauroral ion drift and subauroral polarization streams were detected associated with the two optical signatures measured in 630.0 nm. 
    more » « less
  4. Abstract Meteor radar observations provide wind data ranging from 80 to 100 km altitude, while the Michaelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) onboard the Ionospheric Connection Explorer satellite offers wind data above 90 km altitude. This study aims to generate wind profiles in the mesosphere and lower thermosphere by combining the winds derived from meteor radar and MIGHTI observations over the Korean Peninsula from January 2020 to December 2021. The wind profiles derived from the two instruments are continuous at night, but they show discrepancies during the day. The atomic oxygen 557.7 nm (green line) emission intensity measured by MIGHTI peaks at approximately 100 km during the day and 94 km at night. The vertical gradient of the airglow volume emission rate is more pronounced during the day. These differences can cause day‐night differences in the MIGHTI wind retrieval accuracy, potentially leading to discrepancies during the day. 
    more » « less
  5. Abstract Mountain waves are known sources of fluctuations in the upper atmosphere. However, their effects over the Continental United States (CONUS) are considered modest as compared to hot spots such as the Southern Andes. Here, we present an observation‐guided case study examining the dynamics of gravity waves (GWs) and their impacts on the ionosphere over the CONUS prior to the cold air outbreak in December 2022, which resulted from a significant distortion of the tropospheric polar vortex. The investigation relies on MERRA‐2 and ERA5 reanalysis data sets for the climatological contextualization, analysis of GWs based on National Aeronautics and Space Administration Aqua satellite's Atmospheric Infrared Sounder, 557.7 and 630.0 nm airglow emission observations, and the measurements of ionospheric disturbances retrieved from Global Navigation Satellite System signal‐based total electron content (TEC) and Super Dual Auroral Radar Network observations. We demonstrate that the tropospheric polar jet stream shifted toward the Rocky Mountains, generated large amplitude GWs (up to 11 K of brightness temperature), which, aided by winter‐time winds over mid‐latitudes, could propagate to mesospheric heights. The breaking of GWs plausibly led to the generation of a plethora of secondary acoustic and GWs that eventually emerged as the sources of extensive ionospheric fluctuations of ∼3–30 min periods and up to 0.7 TECu, observed across the entire CONUS for several days. This case offers a valuable demonstration of the interplay between tropospheric circulation and the ionosphere over CONUS, pointing to the need for a better understanding of wave‐driven deep‐atmosphere coupled dynamics. 
    more » « less