We introduce a novel approach to waveform inversion based on a data-driven reduced order model (ROM) of the wave operator. The presentation is for the acoustic wave equation, but the approach can be extended to elastic or electromagnetic waves. The data are time resolved measurements of the pressure wave gathered by an acquisition system that probes the unknown medium with pulses and measures the generated waves. We propose to solve the inverse problem of velocity estimation by minimizing the square misfit between the ROM computed from the recorded data and the ROM computed from the modeled data, at the current guess of the velocity. We give a step by step computation of the ROM, which depends nonlinearly on the data and yet can be obtained from them in a noniterative fashion, using efficient methods from linear algebra. We also explain how to make the ROM robust to data inaccuracy. The ROM computation requires the full array response matrix gathered with colocated sources and receivers. However, we find that the computation can deal with an approximation of this matrix, obtained from towed-streamer data using interpolation and reciprocity on-the-fly. Although the full-waveform inversion approach of nonlinear least-squares data fitting is challenging without low-frequency information, due to multiple minima of the data fit objective function, we find that the ROM misfit objective function has better behavior, even for a poor initial guess. We also find by explicit computation of the objective functions in a simple setting that the ROM misfit objective function has convexity properties, whereas the least-squares data fit objective function displays multiple local minima.
more »
« less
Full reciprocity-gap waveform inversion enabling sparse-source acquisition
The quantitative reconstruction of subsurface earth properties from the propagation of waves follows an iterative minimization of a misfit functional. In marine seismic exploration, the observed data usually consist of measurements of the pressure field, but dual-sensor devices also provide the normal velocity. Consequently, a reciprocity-based misfit functional is specifically designed, and it defines the full reciprocity-gap waveform inversion (FRgWI) method. This misfit functional provides additional features compared to the more traditional least-squares approaches, in particular, in that the observational and computational acquisitions can be different. Therefore, the positions and wavelets of the sources from which the measurements are acquired are not needed in the reconstruction procedure and, in fact, the numerical acquisition (for the simulations) can be chosen arbitrarily. Based on 3D experiments, FRgWI is shown to behave better than full-waveform inversion in the same context. It allows for arbitrary numerical acquisitions in two ways: when few measurements are given, a dense numerical acquisition (compared to the observational one) can be used to compensate. However, with a dense observational acquisition, a sparse computational one is shown to be sufficient, for instance, with multiple-point sources, hence reducing the numerical cost. FRgWI displays accurate reconstructions in both situations and appears more robust with respect to crosstalk than least-squares shot stacking.
more »
« less
- Award ID(s):
- 1815143
- PAR ID:
- 10200516
- Date Published:
- Journal Name:
- GEOPHYSICS
- Volume:
- 85
- Issue:
- 6
- ISSN:
- 0016-8033
- Page Range / eLocation ID:
- R461 to R476
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantitative imaging of subsurface earth properties in elastic media is performed from distributed acoustic sensing data. A new misfit functional based upon the reciprocity gap is designed, taking crosscorrelations of displacement and strain, and these products further associate an observation with a simulation. In comparison with other misfit functionals, this functional has the advantage of only requiring little a priori information on the exciting sources. In particular, the misfit criterion enables the use of data from regional earthquakes (teleseismic events can be included as well), followed by exploration data to perform a multiresolution reconstruction. The data from regional earthquakes contain the low-frequency content that is missing in the exploration data, allowing for the recovery of the long spatial wavelength, even with very few sources. These data are used to build prior models for the subsequent reconstruction from the higher frequency exploration data. This results in the elastic full reciprocity-gap waveform inversion method, and we illustrate its performance with a pilot experiment for elastic isotropic reconstruction.more » « less
-
null (Ed.)State-of-the-art seismic imaging techniques treat inversion tasks such as full-waveform inversion (FWI) and least-squares reverse time migration (LSRTM) as partial differential equation-constrained optimization problems. Due to the large-scale nature, gradient-based optimization algorithms are preferred in practice to update the model iteratively. Higher-order methods converge in fewer iterations but often require higher computational costs, more line-search steps, and bigger memory storage. A balance among these aspects has to be considered. We have conducted an evaluation using Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate the steepest-descent algorithm, which we innovatively treat as a fixed-point iteration. Independent of the unknown parameter dimensionality, the computational cost of implementing the method can be reduced to an extremely low dimensional least-squares problem. The cost can be further reduced by a low-rank update. We determine the theoretical connections and the differences between AA and other well-known optimization methods such as L-BFGS and the restarted generalized minimal residual method and compare their computational cost and memory requirements. Numerical examples of FWI and LSRTM applied to the Marmousi benchmark demonstrate the acceleration effects of AA. Compared with the steepest-descent method, AA can achieve faster convergence and can provide competitive results with some quasi-Newton methods, making it an attractive optimization strategy for seismic inversion.more » « less
-
null (Ed.)Full waveform inversion (FWI) and least-squares reverse time migration (LSRTM) are popular imaging techniques that can be solved as PDE-constrained optimization problems. Due to the large-scale nature, gradient- and Hessian-based optimization algorithms are preferred in practice to find the optimizer iteratively. However, a balance between the evaluation cost and the rate of convergence needs to be considered. We propose the use of Anderson acceleration (AA), a popular strategy to speed up the convergence of fixed-point iterations, to accelerate a gradient descent method. We show that AA can achieve fast convergence that provides competitive results with some quasi-Newton methods. Independent of the dimensionality of the unknown parameters, the computational cost of implementing the method can be reduced to an extremely lowdimensional least-squares problem, which makes AA an attractive method for seismic inversion.more » « less
-
Varadhan, S.R.S. (Ed.)Full-waveform inversion (FWI) is today a standard process for the inverse problem of seismic imaging. PDE-constrained optimization is used to determine unknown parameters in a wave equation that represent geophysical properties. The objective function measures the misfit between the observed data and the calculated synthetic data, and it has traditionally been the least-squares norm. In a sequence of papers, we introduced the Wasserstein metric from optimal transport as an alternative misfit function for mitigating the so-called cycle skipping, which is the trapping of the optimization process in local minima. In this paper, we first give a sharper theorem regarding the convexity of the Wasserstein metric as the objective function. We then focus on two new issues. One is the necessary normalization of turning seismic signals into probability measures such that the theory of optimal transport applies. The other, which is beyond cycle skipping, is the inversion for parameters below reflecting interfaces. For the first, we propose a class of normalizations and prove several favorable properties for this class. For the latter, we demonstrate that FWI using optimal transport can recover geophysical properties from domains where no seismic waves travel through. We finally illustrate these properties by the realistic application of imaging salt inclusions, which has been a significant challenge in exploration geophysics.more » « less
An official website of the United States government

