skip to main content


Title: Analysis of Contact Stability and Contact Safety of a Robotic Intravascular Cardiac Catheter under Blood Flow Disturbances
Award ID(s):
1700839 1563805 1524363
NSF-PAR ID:
10200563
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Contact with racial outgroups is thought to reduce the cross-race recognition deficit (CRD), the tendency for people to recognize same-race (i.e., ingroup) faces more accurately than cross-race (i.e., outgroup) faces. In 2001, Meissner and Brigham conducted a meta-analysis in which they examined this question and found a meta-analytic effect of r = −.13. We conduct a new meta-analysis based on 20 years of additional data to update the estimate of this relationship and examine theoretical and methodological moderators of the effect. We find a meta-analytic effect of r = −.15. In line with theoretical predictions, we find some evidence that the magnitude of this relationship is stronger when contact occurs during childhood rather than adulthood. We find no evidence that the relationship differs for measures of holistic/configural processing compared with normal processing. Finally, we find that the magnitude of the relationship depends on the operationalization of contact and that it is strongest when contact is manipulated. We consider recommendations for further research on this topic. 
    more » « less
  2. Sensitive and flexible pressure sensors have invoked considerable interest for a broad range of applications in tactile sensing, physiological sensing, and flexible electronics. The barrier between high sensitivity and low fabrication cost needs to be addressed to commercialize such flexible pressure sensors. A low-cost sacrificial template-assisted method for the capacitive sensor has been reported herein, utilizing a porous Polydimethylsiloxane (PDMS) polymer and a multiwalled carbon nanotube (MWCNT) composite-based dielectric layer. The sensor shows high sensitivity of 2.42 kPa−1 along with a low limit of detection of 1.46 Pa. The high sensitivity originates from adding MWCNT to PDMS, increasing the composite polymer’s dielectric constant. Besides this, the pressure sensor shows excellent stability at a cyclic loading of 9000 cycles, proving its reliability for long-lasting application in tactile and physiological sensing. The high sensitivity of the sensor is suitable for the detection of small deformations such as pulse waveforms as well as tactile pressure sensing. In addition, the paper demonstrates a simultaneous contact and non-contact sensing capability suitable for dual sensing (pressure and proximity) with a single data readout system. The dual-mode sensing capability may open opportunities for realizing compact systems in robotics, gesture control, contactless applications, and many more. The practicality of the sensor was shown in applications such as tactile sensing, Morse code generator, proximity sensing, and pulse wave sensing. 
    more » « less