Abstract The trace of the $$n$$ -framed surgery on a knot in $$S^{3}$$ is a 4-manifold homotopy equivalent to the 2-sphere. We characterise when a generator of the second homotopy group of such a manifold can be realised by a locally flat embedded $$2$$ -sphere whose complement has abelian fundamental group. Our characterisation is in terms of classical and computable $$3$$ -dimensional knot invariants. For each $$n$$ , this provides conditions that imply a knot is topologically $$n$$ -shake slice, directly analogous to the result of Freedman and Quinn that a knot with trivial Alexander polynomial is topologically slice.
more »
« less
Contact surgery numbers
It is known that any contact $$3$$-manifold can be obtained by rationally contact Dehn surgery along a Legendrian link $$L$$ in the standard tight contact $$3$$-sphere. We define and study various versions of contact surgery numbers, the minimal number of components of a surgery link $$L$$ describing a given contact $$3$$-manifold under consideration. In the first part of the paper, we relate contact surgery numbers to other invariants in terms of various inequalities. In particular, we show that the contact surgery number of a contact manifold is bounded from above by the topological surgery number of the underlying topological manifold plus three. In the second part, we compute contact surgery numbers of all contact structures on the $$3$$-sphere. Moreover, we completely classify the contact structures with contact surgery number one on $$S^1\times S^2$$, the Poincar\'e homology sphere and the Brieskorn sphere $$\Sigma(2,3,7)$$. We conclude that there exist infinitely many non-isotopic contact structures on each of the above manifolds which cannot be obtained by a single rational contact surgery from the standard tight contact $$3$$-sphere. We further obtain results for the $$3$$-torus and lens spaces. As one ingredient of the proofs of the above results we generalize computations of the homotopical invariants of contact structures to contact surgeries with more general surgery coefficients which might be of independent interest.
more »
« less
- Award ID(s):
- 2203312
- PAR ID:
- 10533385
- Publisher / Repository:
- International Press
- Date Published:
- Journal Name:
- Journal of Symplectic Geometry
- Volume:
- 21
- Issue:
- 6
- ISSN:
- 1527-5256
- Page Range / eLocation ID:
- 1255 to 1333
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Aichholzer, Oswin; Wang, Haitao (Ed.)Quantum topology provides various frameworks for defining and computing invariants of manifolds inspired by quantum theory. One such framework of substantial interest in both mathematics and physics is the Turaev-Viro-Barrett-Westbury state sum construction, which uses the data of a spherical fusion category to define topological invariants of triangulated 3-manifolds via tensor network contractions. In this work we analyze the computational complexity of state sum invariants of 3-manifolds derived from Tambara-Yamagami categories. While these categories are the simplest source of state sum invariants beyond finite abelian groups (whose invariants can be computed in polynomial time) their computational complexities are yet to be fully understood. We first establish that the invariants arising from even the smallest Tambara-Yamagami categories are #P-hard to compute, so that one expects the same to be true of the whole family. Our main result is then the existence of a fixed parameter tractable algorithm to compute these 3-manifold invariants, where the parameter is the first Betti number of the 3-manifold with ℤ/2ℤ coefficients. Contrary to other domains of computational topology, such as graphs on surfaces, very few hard problems in 3-manifold topology are known to admit FPT algorithms with a topological parameter. However, such algorithms are of particular interest as their complexity depends only polynomially on the combinatorial representation of the input, regardless of size or combinatorial width. Additionally, in the case of Betti numbers, the parameter itself is computable in polynomial time. Thus while one generally expects quantum invariants to be hard to compute classically, our results suggest that the hardness of computing state sum invariants from Tambara-Yamagami categories arises from classical 3-manifold topology rather than the quantum nature of the algebraic input.more » « less
-
Knot filtered embedded contact homology was first introduced by Hutchings in 2015; it has been computed for the standard transverse unknot in irrational ellipsoids by Hutchings and for the Hopf link in lens spaces via a quotient by Weiler. While toric constructions can be used to understand the ECH chain complexes of many contact forms adapted to open books with binding the unknot and Hopf link, they do not readily adapt to general torus knots and links. In this paper, we generalize the definition and invariance of knot filtered embedded contact homology to allow for degenerate knots with rational rotation numbers. We then develop new methods for understanding the embedded contact homology chain complex of positive torus knotted fibrations of the standard tight contact 3‐sphere in terms of their presentation as open books and as Seifert fiber spaces. We provide Morse–Bott methods, using a doubly filtered complex and the energy filtered perturbed Seiberg–Witten Floer theory developed by Hutchings and Taubes, and use them to compute the knot filtered embedded contact homology, for odd and positive.more » « less
-
We apply Menke’s JSJ decomposition for symplectic fillings to several families of contact 3-manifolds. Among other results, we complete the classification up to orientation-preserving diffeomorphism of strong symplectic fillings of lens spaces. We show that exact symplectic fillings of contact manifolds obtained by surgery on certain Legendrian negative cables are the result of attaching a Weinstein 2-handle to an exact filling of a lens space. For large families of contact structures on Seifert fibered spaces over , we reduce the problem of classifying exact symplectic fillings to the same problem for universally tight or canonical contact structures. Finally, virtually overtwisted circle bundles over surfaces with genus greater than one and negative twisting number are seen to have unique exact fillings.more » « less
-
We conjecture a four-dimensional characterization of tightness: A contact structure on a 3-manifold Y is tight if and only if a slice-Bennequin inequality holds for smoothly embedded surfaces in . An affirmative answer to our conjecture would imply an analogue of the Milnor conjecture for torus knots: If a fibered link L induces a tight contact structure on Y, then its fiber surface maximizes the Euler characteristic among all surfaces in with boundary L. We provide evidence for both conjectures by proving them for contact structures with nonvanishing Ozsváth–Szabó contact invariant.more » « less
An official website of the United States government

