skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cholesterol-rich naked mole-rat brain lipid membranes are susceptible to amyloid beta-induced damage in vitro
Naked mole-rats are extraordinarily long-lived rodents that offer unique opportunities to study the molecular origins of age-related neurodegenerative diseases. Remarkably, they do not accumulate amyloid plaques, even though their brains contain high concentrations of amyloid beta (Aβ) peptide from a young age. Therefore, they represent a particularly favourable organism to study the mechanisms of resistance against Aβ neurotoxicity. Here we examine the composition, phase behaviour, and Aβ interactions of naked mole-rat brain lipids. Relative to mouse, naked mole-rat brain lipids are rich in cholesterol and contain sphingomyelin in lower amounts and of shorter chain lengths. Proteins associated with the metabolism of ceramides, sphingomyelins and sphingosine-1-phosphate receptor 1 were also found to be decreased in naked mole-rat brain lysates. Correspondingly, we find that naked mole-rat brain lipid membranes exhibit a high degree of phase separation, with the liquid ordered phase extending to 80% of the supported lipid bilayer. These observations are consistent with the ‘membrane pacemaker’ hypothesis of ageing, according to which long-living species have lipid membranes particularly resistant to oxidative damage. We also found that exposure to Aβ disrupts naked mole-rat brain lipid membranes significantly, breaking the membrane into pieces while mouse brain derived lipids remain largely intact upon Aβ exposure.  more » « less
Award ID(s):
1655494
PAR ID:
10200659
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Aging
ISSN:
1945-4589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well established that amyloid β-protein (Aβ) self-assembly is involved in triggering of Alzheimer's disease. On the other hand, evidence of physiological function of Aβ interacting with lipids has only begun to emerge. Details of Aβ–lipid interactions, which may underlie physiological and pathological activities of Aβ, are not well understood. Here, the effects of salt and 1,2-dimyristoyl- sn-glycero -3-phosphocholine (DMPC) lipids on conformational dynamics of Aβ42 monomer in water are examined by all-atom molecular dynamics (MD). We acquired six sets of 250 ns long MD trajectories for each of the three lipid concentrations (0, 27, and 109 mM) in the absence and presence of 150 mM salt. Ten replica trajectories per set are used to enhance sampling of Aβ42 conformational space. We show that salt facilitates long-range tertiary contacts in Aβ42, resulting in more compact Aβ42 conformations. By contrast, addition of lipids results in lipid-concentration dependent Aβ42 unfolding concomitant with enhanced stability of the turn in the A21–A30 region. At the high lipid concentration, salt enables the N-terminal region of Aβ42 to form long-range tertiary contacts and interact with lipids, which results in formation of a parallel β-strand. Aβ42 forms stable lipid–protein complexes whereby the protein is adhered to the lipid cluster rather than embedded into it. We propose that the inability of Aβ42 monomer to get embedded into the lipid cluster may be important for facilitating repair of leaks in the blood-brain barrier without penetrating and damaging cellular membranes. 
    more » « less
  2. Stock, Ann M. (Ed.)
    ABSTRACT Staphylococcus aureus can utilize exogenous fatty acids for phospholipid synthesis. The fatty acid kinase FakA is essential for this utilization by phosphorylating exogenous fatty acids for incorporation into lipids. How FakA impacts the lipid membrane composition is unknown. In this study, we used mass spectrometry to determine the membrane lipid composition and properties of S. aureus in the absence of fakA . We found the fakA mutant to have increased abundance of lipids containing longer acyl chains. Since S. aureus does not synthesize unsaturated fatty acids, we utilized oleic acid (18:1) to track exogenous fatty acid incorporation into lipids. We observed a concentration-dependent incorporation of exogenous fatty acids into the membrane that required FakA. We also tested how FakA and exogenous fatty acids impact membrane-related physiology and identified changes in membrane potential, cellular respiration, and membrane fluidity. To mimic the host environment, we characterized the lipid composition of wild-type and fakA mutant bacteria grown in mouse skin homogenate. We show that wild-type S. aureus can incorporate exogenous unsaturated fatty acids from host tissue, highlighting the importance of FakA in the presence of host skin tissue. In conclusion, FakA is important for maintaining the composition and properties of the phospholipid membrane in the presence of exogenous fatty acids, impacting overall cell physiology. IMPORTANCE Environmental fatty acids can be harvested to supplement endogenous fatty acid synthesis to produce membranes and circumvent fatty acid biosynthesis inhibitors. However, how the inability to use these fatty acids impacts lipids is unclear. Our results reveal lipid composition changes in response to fatty acid addition and when S. aureus is unable to activate fatty acids through FakA. We identify concentration-dependent utilization of oleic acid that, when combined with previous work, provides evidence that fatty acids can serve as a signal to S. aureus . Furthermore, using mouse skin homogenates as a surrogate for in vivo conditions, we showed that S. aureus can incorporate host fatty acids. This study highlights how exogenous fatty acids impact bacterial membrane composition and function. 
    more » « less
  3. Lipid rafts are nanoscopic assemblies of sphingolipids, cholesterol, and specific membrane proteins. They are believed to underlie the experimentally observed lateral heterogeneity of eukaryotic plasma membranes and implicated in many cellular processes, such as signaling and trafficking. Ternary model membranes consisting of saturated lipids, unsaturated lipids, and cholesterol are common proxies because they exhibit phase coexistence between a liquid-ordered (lo) and liquid-disordered (ld) phase and an associated critical point. However, plasma membranes are also asymmetric in terms of lipid type, lipid abundance, leaflet tension, and corresponding cholesterol distribution, suggesting that rafts cannot be examined separately from questions about elasticity, curvature torques, and internal mechanical stresses. Unfortunately, it is challenging to capture this wide range of physical phenomenology in a single model that can access sufficiently long length- and time scales. Here we extend the highly coarse-grained Cooke model for lipids, which has been extensively characterized on the curvature-elastic front, to also represent raft-like lo/ld mixing thermodynamics. In particular, we capture the shape and tie lines of a coexistence region that narrows upon cholesterol addition, terminates at a critical point, and has coexisting phases that reflect key differences in membrane order and lipid packing. We furthermore examine elasticity and lipid diffusion for both phase separated and pure systems and how they change upon the addition of cholesterol. We anticipate that this model will enable significant insight into lo/ld phase separation and the associated question of lipid rafts for membranes that have compositionally distinct leaflets that are likely under differential stress—like the plasma membrane. 
    more » « less
  4. Fudge, Julie (Ed.)
    Structural changes involving new neurons can occur through stem cell-driven neurogenesis, and through incorporation of late-maturing “immature” neurons into networks, namely undifferentiated neuronal precursors frozen in a state of arrested maturation. The latter have been found in the cerebral cortex and are particularly abundant in large-brained mammals, covarying with the size of the brain and cortex. Similar cells have been described in the amygdala of some species, although their features and interspecies variation remain poorly understood. Here, their occurrence, number, morphology, molecular expression, age-related changes, and anatomical distribution in amygdala subdivisions were systematically analyzed in eight diverse mammalian species (including mouse, naked mole rat, rabbit, marmoset, cat, sheep, horse, and chimpanzee) widely differing in neuroanatomy, brain size, life span, and socioecology. We identify converging evidence that these amygdala cells are immature neurons and show marked phylogenetic variation, with a significantly greater prevalence in primates. The immature cells are largely located within the amygdala’s basolateral complex, a region that has expanded in primate brain evolution in conjunction with cortical projections. In addition, amygdala immature neurons also appear to stabilize in number through adulthood and old age, unlike other forms of plasticity that undergo marked age-related reduction. These results support the emerging view that large brains performing complex socio-cognitive functions rely on wide reservoirs of immature neurons. 
    more » « less
  5. Naked mole-rats (Heterocephalus glaber) are very unusual among subterranean mammals in that they live in large colonies and are extremely social, spending large amounts of time gathered together in underground nests more than a meter below the surface. Many respiring individuals resting in deep, poorly ventilated nests deplete the oxygen supply and increase the concentration of carbon dioxide. Consistent with living in that atmosphere, naked mole-rats tolerate levels of low oxygen and high carbon dioxide that are deadly to most surface-dwelling mammals. Naked mole-rats appear to have evolved a number of remarkable adaptations to be able to thrive in this harsh atmosphere. In order to successfully survive low oxygen atmospheres, they conserve energy utilization by reducing the physiological activity of all organs, manifest by reduced heart rate and brain activity. Amazingly, they resort to the anaerobic metabolism of fructose rather than glucose as a fuel to generate energy when challenged by anoxia. Similarly, high carbon dioxide atmospheres normally cause tissue acidosis, while naked mole-rats have a genetic mutation preventing both acid-induced pain and pulmonary edema. Together, these putative adaptations and the tolerances they provide make the naked mole-rat an important model for studying a host of biomedical challenges. 
    more » « less