skip to main content


Title: Cholesterol-rich naked mole-rat brain lipid membranes are susceptible to amyloid beta-induced damage in vitro
Naked mole-rats are extraordinarily long-lived rodents that offer unique opportunities to study the molecular origins of age-related neurodegenerative diseases. Remarkably, they do not accumulate amyloid plaques, even though their brains contain high concentrations of amyloid beta (Aβ) peptide from a young age. Therefore, they represent a particularly favourable organism to study the mechanisms of resistance against Aβ neurotoxicity. Here we examine the composition, phase behaviour, and Aβ interactions of naked mole-rat brain lipids. Relative to mouse, naked mole-rat brain lipids are rich in cholesterol and contain sphingomyelin in lower amounts and of shorter chain lengths. Proteins associated with the metabolism of ceramides, sphingomyelins and sphingosine-1-phosphate receptor 1 were also found to be decreased in naked mole-rat brain lysates. Correspondingly, we find that naked mole-rat brain lipid membranes exhibit a high degree of phase separation, with the liquid ordered phase extending to 80% of the supported lipid bilayer. These observations are consistent with the ‘membrane pacemaker’ hypothesis of ageing, according to which long-living species have lipid membranes particularly resistant to oxidative damage. We also found that exposure to Aβ disrupts naked mole-rat brain lipid membranes significantly, breaking the membrane into pieces while mouse brain derived lipids remain largely intact upon Aβ exposure.  more » « less
Award ID(s):
1655494
NSF-PAR ID:
10200659
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Aging
ISSN:
1945-4589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It is well established that amyloid β-protein (Aβ) self-assembly is involved in triggering of Alzheimer's disease. On the other hand, evidence of physiological function of Aβ interacting with lipids has only begun to emerge. Details of Aβ–lipid interactions, which may underlie physiological and pathological activities of Aβ, are not well understood. Here, the effects of salt and 1,2-dimyristoyl- sn-glycero -3-phosphocholine (DMPC) lipids on conformational dynamics of Aβ42 monomer in water are examined by all-atom molecular dynamics (MD). We acquired six sets of 250 ns long MD trajectories for each of the three lipid concentrations (0, 27, and 109 mM) in the absence and presence of 150 mM salt. Ten replica trajectories per set are used to enhance sampling of Aβ42 conformational space. We show that salt facilitates long-range tertiary contacts in Aβ42, resulting in more compact Aβ42 conformations. By contrast, addition of lipids results in lipid-concentration dependent Aβ42 unfolding concomitant with enhanced stability of the turn in the A21–A30 region. At the high lipid concentration, salt enables the N-terminal region of Aβ42 to form long-range tertiary contacts and interact with lipids, which results in formation of a parallel β-strand. Aβ42 forms stable lipid–protein complexes whereby the protein is adhered to the lipid cluster rather than embedded into it. We propose that the inability of Aβ42 monomer to get embedded into the lipid cluster may be important for facilitating repair of leaks in the blood-brain barrier without penetrating and damaging cellular membranes. 
    more » « less
  2. Stock, Ann M. (Ed.)
    ABSTRACT Staphylococcus aureus can utilize exogenous fatty acids for phospholipid synthesis. The fatty acid kinase FakA is essential for this utilization by phosphorylating exogenous fatty acids for incorporation into lipids. How FakA impacts the lipid membrane composition is unknown. In this study, we used mass spectrometry to determine the membrane lipid composition and properties of S. aureus in the absence of fakA . We found the fakA mutant to have increased abundance of lipids containing longer acyl chains. Since S. aureus does not synthesize unsaturated fatty acids, we utilized oleic acid (18:1) to track exogenous fatty acid incorporation into lipids. We observed a concentration-dependent incorporation of exogenous fatty acids into the membrane that required FakA. We also tested how FakA and exogenous fatty acids impact membrane-related physiology and identified changes in membrane potential, cellular respiration, and membrane fluidity. To mimic the host environment, we characterized the lipid composition of wild-type and fakA mutant bacteria grown in mouse skin homogenate. We show that wild-type S. aureus can incorporate exogenous unsaturated fatty acids from host tissue, highlighting the importance of FakA in the presence of host skin tissue. In conclusion, FakA is important for maintaining the composition and properties of the phospholipid membrane in the presence of exogenous fatty acids, impacting overall cell physiology. IMPORTANCE Environmental fatty acids can be harvested to supplement endogenous fatty acid synthesis to produce membranes and circumvent fatty acid biosynthesis inhibitors. However, how the inability to use these fatty acids impacts lipids is unclear. Our results reveal lipid composition changes in response to fatty acid addition and when S. aureus is unable to activate fatty acids through FakA. We identify concentration-dependent utilization of oleic acid that, when combined with previous work, provides evidence that fatty acids can serve as a signal to S. aureus . Furthermore, using mouse skin homogenates as a surrogate for in vivo conditions, we showed that S. aureus can incorporate host fatty acids. This study highlights how exogenous fatty acids impact bacterial membrane composition and function. 
    more » « less
  3. The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the β-amyloid (Aβ) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aβ are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase inAppgene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown ofAppblock the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aβ, either fibrillar or oligomeric, has no effect. In culture, APPSwe(a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and βIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS.In vivoasin vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.

    SIGNIFICANCE STATEMENTWhile the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity.In vivoandin vitro, modest amounts of excess APP alter the properties of the axon initial segment. The β-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.

     
    more » « less
  4. Abstract

    A variety of rodents have been used as experimental animals in metabolic studies of plasma lipids and lipoproteins. These studies have included understanding the functional role of apolipoprotein A‐I, the major protein on the surface of HDL. Reviewing the genomic database for entries for rodentapoA‐Igenes, it was discovered that the naked mole‐rat (Heterocephalus glaber) gene encoded a protein with a cysteine at residue 28. Previously, two cases have been reported in which human heterozygotes had apoA‐I with cysteine at residues 173 (apoA‐I Milano) or at 151 (apoA‐I Paris). Interestingly, both groups, in spite of having low levels of HDL and moderately elevated plasma triacylglycerols, had no evidence of cardiovascular disease. Moreover, the presence of the cysteine enabled the apoA‐I to form both homodimers and heterodimers. Prior to this report, no other mammalian apoA‐I has been found with a cysteine in its sequence. In addition, the encoded naked mole‐rat protein had different amino acids at sites that were conserved in all other mammals. These differences resulted in naked mole‐rat apoA‐I having an unexpected neutral pI value, whereas other mammalian apoA‐I have negative pI values. To verify these sequence differences and to determine if the N‐terminal location of C28 precluded dimer formation, we conducted mass spectrometry analyses of apoA‐I and other proteins associated with HDL. Consistent with the genomic data, our analyses confirmed the presence of C28 and the formation of a homodimer. Analysis of plasma lipids surprisingly revealed a profile similar to the human heterozygotes.

     
    more » « less
  5. Aggregation of misfolded oligomeric amyloid-beta (Aβ) peptides on lipid membranes has been identified as a primary event in Alzheimer's pathogenesis. However, the structural and dynamical features of this membrane assisted Aβ aggregation have not been well characterized. The microscopic characterization of dynamic molecular-level interactions in peptide aggregation pathways has been challenging both computationally and experimentally. In this work, we explore differential patterns of membrane-induced Aβ 16–22 (K–L–V–F–F–A–E) aggregation from the microscopic perspective of molecular interactions. Physics-based coarse-grained molecular dynamics (CG-MD) simulations were employed to investigate the effect of lipid headgroup charge – zwitterionic (1-palmitoyl-2-oleoyl- sn-glycero -3-phosphocholine: POPC) and anionic (1-palmitoyl-2-oleoyl- sn-glycero -3-phospho- l -serine: POPS) – on Aβ 16–22 peptide aggregation. Our analyses present an extensive overview of multiple pathways for peptide absorption and biomechanical forces governing peptide folding and aggregation. In agreement with experimental observations, anionic POPS molecules promote extended configurations in Aβ peptides that contribute towards faster emergence of ordered β-sheet-rich peptide assemblies compared to POPC, suggesting faster fibrillation. In addition, lower cumulative rates of peptide aggregation in POPS due to higher peptide–lipid interactions and slower lipid diffusion result in multiple distinct ordered peptide aggregates that can serve as nucleation seeds for subsequent Aβ aggregation. This study provides an in-silico assessment of experimentally observed aggregation patterns, presents new morphological insights and highlights the importance of lipid headgroup chemistry in modulating the peptide absorption and aggregation process. 
    more » « less