skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Numerical analysis of sparse initial data identification for parabolic problems
In this paper we consider a problem of initial data identification from the final time observation for homogeneous parabolic problems. It is well-known that such problems are exponentially ill-posed due to the strong smoothing property of parabolic equations. We are interested in a situation when the initial data we intend to recover is known to be sparse, i.e. its support has Lebesgue measure zero. We formulate the problem as an optimal control problem and incorporate the information on the sparsity of the unknown initial data into the structure of the objective functional. In particular, we are looking for the control variable in the space of regular Borel measures and use the corresponding norm as a regularization term in the objective functional. This leads to a convex but non-smooth optimization problem. For the discretization we use continuous piecewise linear finite elements in space and discontinuous Galerkin finite elements of arbitrary degree in time. For the general case we establish error estimates for the state variable. Under a certain structural assumption, we show that the control variable consists of a finite linear combination of Dirac measures. For this case we obtain error estimates for the locations of Dirac measures as well as for the corresponding coefficients. The key to the numerical analysis are the sharp smoothing type pointwise finite element error estimates for homogeneous parabolic problems, which are of independent interest. Moreover, we discuss an efficient algorithmic approach to the problem and show several numerical experiments illustrating our theoretical results.  more » « less
Award ID(s):
1913133
PAR ID:
10200664
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ESAIM: Mathematical Modelling and Numerical Analysis
Volume:
54
Issue:
4
ISSN:
0764-583X
Page Range / eLocation ID:
1139 to 1180
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we analyze a homogeneous parabolic problem with initial data in the space of regular Borel measures. The problem is discretized in time with a discontinuous Galerkin scheme of arbitrary degree and in space with continuous finite elements of orders one or two. We show parabolic smoothing results for the continuous, semidiscrete and fully discrete problems. Our main results are interiorLerror estimates for the evaluation at the endtime, in cases where the initial data is supported in a subdomain. In order to obtain these, we additionally show interiorLerror estimates forL2initial data and quadratic finite elements, which extends the corresponding result previously established by the authors for linear finite elements. 
    more » « less
  2. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less
  3. We present a neural network approach for approximating the value function of high- dimensional stochastic control problems. Our training process simultaneously updates our value function estimate and identifies the part of the state space likely to be visited by optimal trajectories. Our approach leverages insights from optimal control theory and the fundamental relation between semi-linear parabolic partial differential equations and forward-backward stochastic differential equations. To focus the sampling on relevant states during neural network training, we use the stochastic Pontryagin maximum principle (PMP) to obtain the optimal controls for the current value function estimate. By design, our approach coincides with the method of characteristics for the non-viscous Hamilton-Jacobi-Bellman equation arising in deterministic control problems. Our training loss consists of a weighted sum of the objective functional of the control problem and penalty terms that enforce the HJB equations along the sampled trajectories. Importantly, training is unsupervised in that it does not require solutions of the control problem. Our numerical experiments highlight our scheme’s ability to identify the relevant parts of the state space and produce meaningful value estimates. Using a two-dimensional model problem, we demonstrate the importance of the stochastic PMP to inform the sampling and compare to a finite element approach. With a nonlinear control affine quadcopter example, we illustrate that our approach can handle complicated dynamics. For a 100-dimensional benchmark problem, we demonstrate that our approach improves accuracy and time-to-solution and, via a modification, we show the wider applicability of our scheme. 
    more » « less
  4. We present an optimal a priori error estimates of the elliptic problems with Dirac sources away from the singular point using discontinuous and enriched Galerkin finite element methods. It is widely shown that the finite element solutions for elliptic problems with Dirac source terms converge sub-optimally in classical norms on uniform meshes. However, here we employ inductive estimates and norm to obtain the optimal order by excluding the small ball regions with the singularities for both two and three dimensional domains. Numerical examples are presented to substantiate our theoretical results. 
    more » « less
  5. null (Ed.)
    This work derives a residual-based a posteriori error estimator for reduced models learned with non-intrusive model reduction from data of high-dimensional systems governed by linear parabolic partial differential equations with control inputs. It is shown that quantities that are necessary for the error estimator can be either obtained exactly as the solutions of least-squares problems in a non-intrusive way from data such as initial conditions, control inputs, and high-dimensional solution trajectories or bounded in a probabilistic sense. The computational procedure follows an offline/online decomposition. In the offline (training) phase, the high-dimensional system is judiciously solved in a black-box fashion to generate data and to set up the error estimator. In the online phase, the estimator is used to bound the error of the reduced-model predictions for new initial conditions and new control inputs without recourse to the high-dimensional system. Numerical results demonstrate the workflow of the proposed approach from data to reduced models to certified predictions. 
    more » « less