In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.
more »
« less
Discontinuous Galerkin approximations to elliptic and parabolic problems with a Dirac line source
The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results.
more »
« less
- Award ID(s):
- 2111459
- PAR ID:
- 10421164
- Date Published:
- Journal Name:
- ESAIM: Mathematical Modelling and Numerical Analysis
- Volume:
- 57
- Issue:
- 2
- ISSN:
- 2822-7840
- Page Range / eLocation ID:
- 585 to 620
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we study the optimal error estimates of the classical discontinuous Galerkin method for time-dependent 2-D hyperbolic equations using P k elements on uniform Cartesian meshes, and prove that the error in the L 2 norm achieves optimal ( k + 1)th order convergence when upwind fluxes are used. For the linear constant coefficient case, the results hold true for arbitrary piecewise polynomials of degree k ≥ 0. For variable coefficient and nonlinear cases, we give the proof for piecewise polynomials of degree k = 0, 1, 2, 3 and k = 2, 3, respectively, under the condition that the wind direction does not change. The theoretical results are verified by numerical examples.more » « less
-
Abstract The Allen‐Cahn equation satisfies the maximum bound principle, that is, its solution is uniformly bounded for all time by a positive constant under appropriate initial and/or boundary conditions. It has been shown recently that the time‐discrete solutions produced by low regularity integrators (LRIs) are likewise bounded in the infinity norm; however, the corresponding fully discrete error analysis is still lacking. This work is concerned with convergence analysis of the fully discrete numerical solutions to the Allen‐Cahn equation obtained based on two first‐order LRIs in time and the central finite difference method in space. By utilizing some fundamental properties of the fully discrete system and the Duhamel's principle, we prove optimal error estimates of the numerical solutions in time and space while the exact solution is only assumed to be continuous in time. Numerical results are presented to confirm such error estimates and show that the solution obtained by the proposed LRI schemes is more accurate than the classical exponential time differencing (ETD) scheme of the same order.more » « less
-
null (Ed.)Abstract Optimal transport maps and plans between two absolutely continuous measures $$\mu$$ and $$\nu$$ can be approximated by solving semidiscrete or fully discrete optimal transport problems. These two problems ensue from approximating $$\mu$$ or both $$\mu$$ and $$\nu$$ by Dirac measures. Extending an idea from Gigli (2011, On Hölder continuity-in-time of the optimal transport map towards measures along a curve. Proc. Edinb. Math. Soc. (2), 54, 401–409), we characterize how transport plans change under the perturbation of both $$\mu$$ and $$\nu$$. We apply this insight to prove error estimates for semidiscrete and fully discrete algorithms in terms of errors solely arising from approximating measures. We obtain weighted $L^2$ error estimates for both types of algorithms with a convergence rate $$O(h^{1/2})$$. This coincides with the rate in Theorem 5.4 in Berman (2018, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport. Preprint available at arXiv:1803.00785) for semidiscrete methods, but the error notion is different.more » « less
-
This paper is concerned with the PDE (partial differential equation) and numerical analysis of a modified one-dimensional intravascular stent model. It is proved that the modified model has a unique weak solution by using the Galerkin method combined with a compactness argument. A semi-discrete finite-element method and a fully discrete scheme using the Euler time-stepping have been formulated for the PDE model. Optimal order error estimates in the energy norm are proved for both schemes. Numerical results are presented, along with comparisons between different decoupling strategies and time-stepping schemes. Lastly, extensions of the model and its PDE and numerical analysis results to the two-dimensional case are also briefly discussed.more » « less
An official website of the United States government

