skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visual storytelling of scientific data: collaborations between physics and graphic design in the college classroom
The Common Problem Pedagogy (CPP) project, a learning initiative implemented in four SUNY schools, aims to provide students with multidisciplinary, project-based experiences, and to foster a culture of such pedagogy among faculty. This work describes one CPP project that was conducted at SUNY Cortland during the Spring 2019 semester that brought together students from physics and graphic design disciplines. The goal of this project was to identify issues of environmental and social concern, develop numerical models to represent the effects of possible policy actions, and to communicate the meaning of this work as infographics suitable for a non-expert, public audience. This article discusses the project structure and organization, the numerical modeling work, the design process and creation of infographics, concluding with reflections on the points of success and plans for further development.  more » « less
Award ID(s):
1712203
PAR ID:
10200742
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The SUNY Journal of the Scholarship of Engagement: JoSE
Volume:
1
Page Range / eLocation ID:
Article 2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Common Problems Project (CP2) is an interdisciplinary, problem-based pedagogy that was launched in 2015 by four partner colleges in the State University of New York (SUNY) system (Cortland, Oneonta, Oswego, and Plattsburgh). Since its inception, 100 faculty have participated in CP2 and integrated the pedagogy into 134 courses to implement 47 collaborative projects. CP2 is based on a simple but innovative approach in which instructors from different disciplines identify a real-world problem they have in common. They pair their relevant existing classes so that students can work in interdisciplinary teams to propose solutions to the problem. This paper describes CP2 and its theoretical underpinnings, provides the results of a three-pronged approach to assessment, and outlines recommendations for faculty and institutions who may be interested in replicating CP2 on their campuses. CP2 model holds promise for a future of collaborative problem solving as a pedagogical approach, and, as such, this article will be of interest to a wide range of scholars, practitioners, educators, and administrators. 
    more » « less
  2. The Hispanic Serving Institution Advanced Technological Education Hub 2 (HSI ATE Hub 2) is a three-year collaborative research project funded by the National Science Foundation (NSF) that builds upon the successful outcomes of two mentoring and professional development (PD) programs in a pilot that translates foundational theory related to culturally responsive pedagogy into practice using a 3-tier scaffolded faculty PD model. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot, optimization, and dissemination of this model at 2-year Hispanic Serving Institutions (HSIs). The tiered PD model has been tested by two faculty cohorts at Westchester Community College (WCC), an HSI in the State University of New York (SUNY) system. In year one, Cohort A piloted the PD modules in Tier 1 which featured reflective exercises and small culturally responsive activities to try with their STEM students. In year two, Cohort A piloted the PD modules in Tier 2 and peer-mentored Cohort B as they piloted optimizations introduced to Tier 1 from Cohort A feedback. Three types of optimizations came from faculty feedback. The first considered feedback regarding delivery and/or nature of the content that influenced a subsequent module. The second involved making changes to a particular module before it was delivered to another faculty cohort. The third takes into account what worked and what didn’t to decide which content to bring into virtual webinars for the broader advanced technician education community. Dissemination of the tiered PD model has been achieved in annual webinars with the broader ATE community and at conferences for advanced technician educators to achieve broader impacts in the ATE Community. Longer term, providing professional development in culturally responsive pedagogy and practices can help existing and future faculty learn to productively engage their students in more inclusive ways. As faculty mindsets shift to asset-based thinking and a climate of mutual respect is developed, the learning environment for all students in technician education programs will improve. When students learn in a supportive environment, their chances for success increase. The professional development provided in the HSI ATE Hub 2 project will lead to longer term improvements in four ways: 1) Retainment of Culturally responsive practices by those directly engaged after the project ends; 2) Inserting top activities from the PD into national webinars to extend the reach of the training; 3) Strengthening grant proposals as faculty integrate culturally responsive strategies, knowledge and experience within their ATE proposals to the NSF; and 4) Meeting industry demand for a diverse technician workforce. This second paper in a three-part series describes ongoing progress and lessons learned in developing and piloting the 3-Tier PD model with two Cohorts of STEM faculty at a 2-year HSI. 
    more » « less
  3. The Hispanic Serving Institution Advanced Technological Education Hub 2 (HSI ATE Hub 2) is a three-year collaborative research project funded by the National Science Foundation (NSF) that builds upon the successful outcomes of two mentoring and professional development (PD) programs in a pilot that translates foundational theory related to culturally responsive pedagogy into practice using a 3-tier scaffolded faculty PD model. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot, optimization, and dissemination of this model at 2-year Hispanic Serving Institutions (HSIs). The tiered PD model has been tested by two faculty cohorts at Westchester Community College (WCC), an HSI in the State University of New York (SUNY) system. In year one, Cohort A piloted the PD modules in Tier 1 which featured reflective exercises and small culturally responsive activities to try with their STEM students. In year two, Cohort A piloted the PD modules in Tier 2 and peer-mentored Cohort B as they piloted optimizations introduced to Tier 1 from Cohort A feedback. Three types of optimizations came from faculty feedback. The first considered feedback regarding delivery and/or nature of the content that influenced a subsequent module. The second involved making changes to a particular module before it was delivered to another faculty cohort. The third takes into account what worked and what didn’t to decide which content to bring into virtual webinars for the broader advanced technician education community. Dissemination of the tiered PD model has been achieved in annual webinars with the broader ATE community and at conferences for advanced technician educators to achieve broader impacts in the ATE Community. Longer term, providing professional development in culturally responsive pedagogy and practices can help existing and future faculty learn to productively engage their students in more inclusive ways. As faculty mindsets shift to asset-based thinking and a climate of mutual respect is developed, the learning environment for all students in technician education programs will improve. When students learn in a supportive environment, their chances for success increase. The professional development provided in the HSI ATE Hub 2 project will lead to longer term improvements in four ways: 1) Retainment of Culturally responsive practices by those directly engaged after the project ends; 2) Inserting top activities from the PD into national webinars to extend the reach of the training; 3) Strengthening grant proposals as faculty integrate culturally responsive strategies, knowledge and experience within their ATE proposals to the NSF; and 4) Meeting industry demand for a diverse technician workforce. This second paper in a three-part series describes ongoing progress and lessons learned in developing and piloting the 3-Tier PD model with two Cohorts of STEM faculty at a 2-year HSI. 
    more » « less
  4. de Vries, E; Hod, Y.; Ahn, J. (Ed.)
    We report on design-based research to refine a professional development workshop that supports teachers to customize online curricula. We iteratively design representations to make the knowledge integration pedagogy of the curricula visible. We study ways to make the work of students using the curricula actionable for participating teachers. We analyze participants’ trajectories across the three iterations of the workshop. Initially, when participants realized they could customize the online curriculum, they developed feelings of ownership. Then, as participants deepened their understanding of the pedagogy, they began to use it to evaluate their own instruction. The trajectory culminated in participants connecting the pedagogy to student work from their own classroom. This led to a shift from focusing on remedies for misconceptions to seeking opportunities for building on students’ nascent ideas when customizing. The workshop refinements empowered teachers to mobilize the pedagogy to interpret their students' work to inform their customization decisions. 
    more » « less
  5. Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We design a new problem type where we present these chunks in a Parsons Problem fashion and asked students to reconstruct the complete solution from the chunks. We incorporated these problems within an intelligent logic tutor and called them Chunky Parsons Problems (CPP). These problems demonstrate the process of problem decomposition to students and require them to pay attention to the decomposed solution while they reconstruct the complete solution. The aim of introducing CPP was to improve students’ problem-solving skills and performance by improving their decomposition-recomposition skills without significantly increasing training difficulty. Our analysis showed that CPPs could be as easy as Worked Examples (WE). And, students who received CPP with simple explanations attached to the chunks had marginally higher scores than those who received CPPs without explanation or did not receive them. Also, the normalized learning gain of these students shifted more towards the positive side than other students. Finally, as we looked into their proof-construction traces in posttest problems, we observed them to form identifiable chunks aligned with those found in historical solutions with higher efficiency. 
    more » « less