Learning to derive subgoals reduces the gap between experts and students and makes students prepared for future problem solving. Researchers have explored subgoallabeled instructional materials in traditional problem solving and within tutoring systems to help novices learn to subgoal. However, only a little research is found on problemsolving strategies in relationship with subgoal learning. Also, these strategies are underexplored within computerbased tutors and learning environments. The backward problemsolving strategy is closely related to the process of subgoaling, where problem solving iteratively refines the goal into a new subgoal to reduce difficulty. In this paper, we explore a training strategy for backward strategy learning within an intelligent logic tutor that teaches logicproof construction. The training session involved backward worked examples (BWE) and problem solving (BPS) to help students learn backward strategy towards improving their subgoaling and problemsolving skills. To evaluate the training strategy, we analyzed students’ 1) experience with and engagement in learning backward strategy, 2) performance and 3) proof construction approaches in new problems that they solved independently without tutor help after each level of training and in posttest. Our results showed that, when new problems were given to solve without any tutor help, students who were trained with both BWE and BPS outperformed students who received none of the treatment or only BWE during training. Additionally, students trained with both BWE and BPS derived subgoals during proof construction with significantly higher efficiency than the other two groups.
Learning problem decompositionrecomposition with datadriven chunky parsons problem within an intelligent logic tutor.
Problem decomposition into subproblems or subgoals and
recomposition of the solutions to the subgoals into one complete
solution is a common strategy to reduce difficulties in
structured problem solving. In this study, we use a datadriven
graphminingbased method to decompose historical
student solutions of logicproof problems into Chunks. We
design a new problem type where we present these chunks
in a Parsons Problem fashion and asked students to reconstruct
the complete solution from the chunks. We incorporated
these problems within an intelligent logic tutor
and called them Chunky Parsons Problems (CPP). These
problems demonstrate the process of problem decomposition
to students and require them to pay attention to the
decomposed solution while they reconstruct the complete
solution. The aim of introducing CPP was to improve students’
problemsolving skills and performance by improving
their decompositionrecomposition skills without significantly
increasing training difficulty. Our analysis showed
that CPPs could be as easy as Worked Examples (WE).
And, students who received CPP with simple explanations
attached to the chunks had marginally higher scores than
those who received CPPs without explanation or did not
receive them. Also, the normalized learning gain of these
students shifted more towards the positive side than other
students. Finally, as we looked into their proofconstruction traces in posttest problems, we observed them to form identifiable
chunks aligned with those found in historical solutions
with higher efficiency.
more »
« less
 Award ID(s):
 2013502
 NSFPAR ID:
 10525859
 Publisher / Repository:
 Springer
 Date Published:
 Format(s):
 Medium: X
 Location:
 In Proceedings of the 16th International Conference on Educational Data Mining (EDM)
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract 
In this paper, we explore using Parsons problems to scaffold novice programmers who are struggling while solving writecode problems. Parsons problems, in which students put mixedup code blocks in order, can be created quickly and already serve thousands of students while other types of programming support methods are expensive to develop or do not scale. We conducted two studies in which novices were given equivalent Parsons problems as optional scaffolding while solving writecode problems. We investigated when, why, and how students used the Parsons problems as well as their perceptions of the benefits and challenges. A thinkaloud observational study with 11 undergraduate students showed that students utilized the Parsons problem before writing a solution to get ideas about where to start; during writing a solution when they were stuck; and after writing a solution to debug errors and look for better strategies. Semistructured interviews with the same 11 undergraduate students provided evidence that using Parsons problems to scaffold writecode problems helped students to reduce the difficulty, reduce the problem completion time, learn problemsolving strategies, and refine their programming knowledge. However, some students found them less useful if the Parsons solution did not match their approach or if they did not understand the solution. We then conducted a betweensubjects classroom study with 81 undergraduate students to investigate the effects on learning. We found that students who received Parsons problems as scaffolding during writecode problems spent significantly less time solving those problems. However, there was no significant learning gain in either condition from pretest to posttest. We also discuss the design implications of our findings.more » « less

Novice programmers struggle with writing code from scratch. One possible way to help them is by using an equivalent Parsons problem on demand, where learners place mixedup code blocks in the correct order. In a classroom study with 89 undergraduate students, we examined how using a Parsons problem as scaffolding impacts performance and problemsolving efficiency. Results showed that students in the Parsons as Help group achieved significantly higher practice performance and problemsolving efficiency than students who wrote code without help, while achieving the same level of posttest scores. These results improve the understanding of Parsons problems and contribute to the design of future coding practices.more » « less

Introductory programming courses aim to teach students to write code independently. However, transitioning from studying worked examples to generating their own code is often difficult and frustrating for students, especially those with lower CS selfefficacy in general. Therefore, we investigated the impact of using Parsons problems as a codewriting scaffold for students with varying levels of CS selfefficacy. Parsons problems are programming tasks where students arrange mixedup code blocks in the correct order. We conducted a betweensubjects study with undergraduate students (N=89) on a topic where students have limited codewriting expertise. Students were randomly assigned to one of two conditions. Students in one condition practiced writing code without any scaffolding, while students in the other condition were provided with scaffolding in the form of an equivalent Parsons problem. We found that, for students with low CS selfefficacy levels, those who received scaffolding achieved significantly higher practice performance and inpractice problemsolving efficiency compared to those without any scaffolding. Furthermore, when given Parsons problems as scaffolding during practice, students with lower CS selfefficacy were more likely to solve them. In addition, students with higher prepractice knowledge on the topic were more likely to effectively use the Parsons scaffolding. This study provides evidence for the benefits of using Parsons problems to scaffold students’ writecode activities. It also has implications for optimizing the Parsons scaffolding experience for students, including providing personalized and adaptive Parsons problems based on the student’s current problemsolving status.more » « less

This work in progress research paper considers the question, what kind of problems do engineering students commonly solve during their education? Engineering problems have been generally classified as illstructured/openended or wellstructured/closedended. Various authors have identified the characteristics of illstructured problems or presented typologies of problems. Simple definitions state that wellstructured problems are simple, concrete, and have a single solution, while illstructured problems are complex, abstract, and have multiple possible solutions (Jonassen, 1997, 2000). More detailed classifications have been provided by Shin, Jonassen, and McGee (2003), Voss (2006), and Johnstone (2001). It is commonly understood that classroom problems are wellstructured while workplace problems are illstructured, but we cannot find any empirical data to confirm or deny this proposition. Engineers commonly encounter illstructured problems such as design problems in the field therefore problemsolving skills are invaluable and should be taught in engineering courses. This research specifically looks at the types of problems present in the two most commonly used statics textbooks (Hibbeler, 2016; Beer, et al., 2019). All endofchapter problems in these textbooks were classified using Jonassen’s (2000) wellknown typology of problem types. Out of 3,387 problems between both books, 99% fell into the algorithmic category and the remaining fell into the logic category. These preliminary results provide an understanding of the types of problems engineering students most commonly encounter in their classes. Prior research has documented that textbook example problems exert a strong influence on students' problemsolving strategies (Lee et al., 2013). If instructors only assign textbook problems, students in statics courses do not see any illstructured problems at that stage in their education. We argue that even in foundational courses such as statics, students should be exposed to illstructured problems. By providing opportunities for students to solve more illstructured problems, students can become more familiar with them and become better prepared for the workforce. Moving forward, textbooks from several other courses will be analyzed to determine the difference between a fundamental engineering course such as statics and upperlevel courses. This research will allow us to determine how the problem types differ between entry level and advanced classes and reveal if engineering textbooks primarily contain wellstructured problems. Keywords: problem solving, textbooks, illstructured problemsmore » « less