skip to main content


Title: Towards a Threat Model for Vehicular Fog Computing
Security is a huge challenge in vehicular networks due to the large size of the network, high mobility of nodes, and continuous change of network topology. These challenges are also applicable to the vehicular fog, which is a new computing paradigm in the context of vehicular networks. In vehicular fog computing, the vehicles serve as fog nodes. This is a promising model for latency-sensitive and location-aware services, which also incurs some unique security and privacy issues. However, there is a lack of a systematic approach to design security solutions of the vehicular fog using a comprehensive threat model. Threat modeling is a step-by-step process to analyze, identify, and prioritize all the potential threats and vulnerabilities of a system and solve them with known security solutions. A well-designed threat model can help to understand the security and privacy threats, vulnerabilities, requirements, and challenges along with the attacker model, the attack motives, and attacker capabilities. Threat model analysis in vehicular fog computing is critical because only brainstorming and threat models of other vehicular network paradigms will not provide a complete scenario of potential threats and vulnerabilities. In this paper, we have explored the threat model of vehicular fog computing and identified the threats and vulnerabilities using STRIDE and CIAA threat modeling processes. We posit that this initiative will help to improve the security and privacy system design of vehicular fog computing.  more » « less
Award ID(s):
1642078
NSF-PAR ID:
10200839
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)
Page Range / eLocation ID:
1051 to 1057
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Security is a huge challenge in vehicular networks due to the large size of the network, high mobility of nodes, and continuous change of network topology. These challenges are also applicable to the vehicular fog, which is a new computing paradigm in the context of vehicular networks. In vehicular fog computing, the vehicles serve as fog nodes. This is a promising model for latency-sensitive and location-aware services, which also incurs some unique security and privacy issues. However, there is a lack of a systematic approach to design security solutions of the vehicular fog using a comprehensive threat model. Threat modeling is a step-by-step process to analyze, identify, and prioritize all the potential threats and vulnerabilities of a system and solve them with known security solutions. A well-designed threat model can help to understand the security and privacy threats, vulnerabilities, requirements, and challenges along with the attacker model, the attack motives, and attacker capabilities. Threat model analysis in vehicular fog computing is critical because only brainstorming and threat models of other vehicular network paradigms will not provide a complete scenario of potential threats and vulnerabilities. In this paper, we have explored the threat model of vehicular fog computing and identified the threats and vulnerabilities using STRIDE and CIAA threat modeling processes. We posit that this initiative will help to improve the security and privacy system design of vehicular fog computing. 
    more » « less
  2. null (Ed.)
    In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample computing power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes - CIAA and STRIDE - to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems. 
    more » « less
  3. In recent years, the addition of billions of Internet of Thing (IoT) device spawned a massive demand for computing service near the edge of the network. Due to latency, limited mobility, and location awareness, cloud computing is not capable enough to serve these devices. As a result, the focus is shifting more towards distributed platform service to put ample com- puting power near the edge of the networks. Thus, paradigms such as Fog and Edge computing are gaining attention from researchers as well as business stakeholders. Fog computing is a new computing paradigm, which places computing nodes in between the Cloud and the end user to reduce latency and increase availability. As an emerging technology, Fog computing also brings newer security challenges for the stakeholders to solve. Before designing the security models for Fog computing, it is better to understand the existing threats to Fog computing. In this regard, a thorough threat model can significantly help to identify these threats. Threat modeling is a sophisticated engineering process by which a computer-based system is analyzed to discover security flaws. In this paper, we applied two popular security threat modeling processes – CIAA and STRIDE – to identify and analyze attackers, their capabilities and motivations, and a list of potential threats in the context of Fog computing. We posit that such a systematic and thorough discussion of a threat model for Fog computing will help security researchers and professionals to design secure and reliable Fog computing systems. 
    more » « less
  4. Autonomous vehicles (AVs) are envisioned to enhance safety and efficiency on the road, increase productivity, and positively impact the urban transportation system. Due to recent developments in autonomous driving (AD) technology, AVs have started moving on the road. However, this promising technology has many unique security challenges that have the potential to cause traffic accidents. Though some researchers have exploited and addressed specific security issues in AD, there is a lack of a systematic approach to designing security solutions using a comprehensive threat model. A threat model analyzes and identifies potential threats and vulnerabilities. It also identifies the attacker model and proposes mitigation strategies based on known security solutions. As an emerging cyber-physical system, the AD system requires a well-designed threat model to understand the security threats and design solutions. This paper explores security issues in the AD system and analyzes the threat model using the STRIDE threat modeling process. We posit that our threat model-based analysis will help improve AVs' security and guide researchers toward developing secure AVs. 
    more » « less
  5. The NTT (Nippon Telegraph and Telephone) Data Corporation report found that 80% of U.S. consumers are concerned about their smart home data security. The Internet of Things (IoT) technology brings many benefits to people's homes, and more people across the world are heavily dependent on the technology and its devices. However, many IoT devices are deployed without considering security, increasing the number of attack vectors available to attackers. Numerous Internet of Things devices lacking security features have been compromised by attackers, resulting in many security incidents. Attackers can infiltrate these smart home devices and control the home via turning off the lights, controlling the alarm systems, and unlocking the smart locks, to name a few. Attackers have also been able to access the smart home network, leading to data exfiltration. There are many threats that smart homes face, such as the Man-in-the-Middle (MIM) attacks, data and identity theft, and Denial of Service (DoS) attacks. The hardware vulnerabilities often targeted by attackers are SPI, UART, JTAG, USB, etc. Therefore, to enhance the security of the smart devices used in our daily lives, threat modeling should be implemented early on in developing any given system. This past Spring semester, Morgan State University launched a (senior) capstone project targeting undergraduate (electrical) engineering students who were thus allowed to research with the Cybersecurity Assurance and Policy (CAP) center for four months. The primary purpose of the capstone was to help students further develop both hardware and software skills while researching. For this project, the students mainly focused on the Arduino Mega Board. Some of the expected outcomes for this capstone project include: 1) understanding the physical board components, 2) learning how to attack the board through the STRIDE technique, 3) generating a Data Flow Diagram (DFD) of the system using the Microsoft threat modeling tool, 4) understanding the attack patterns, and 5) generating the threat based on the user's input. To prevent future threats and attacks from taking advantage of systems vulnerabilities, the practice of "threat modeling" is implemented. This method allows the analysis of potential attackers, including their goals and techniques, while also providing solutions and mitigation strategies. Although Threat modeling can be performed throughout the development of a system, implementing it during developmental stages will prevent further problems in the future. Threat Modeling is crucial because it will help identify any potential threat before it propagates in the system. Identifying threats and providing countermeasures will save both time and money while also keeping the consumers safe. As a result, students must grow to understand how essential detecting and preventing attacks are to protect consumer information systems and networks. At the end of this capstone project, students should take away hands-on skills in cyber defense. 
    more » « less