skip to main content

Title: Quest for quantum states via field-altering technology

We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in their non-altered counterparts. The field-altered materials include an array of4dand5dtransition metal oxides, and three representative materials presented here are Ba4Ir3O10, Ca2RuO4, and Sr2IrO4. This study provides an approach for discovery of quantum states and materials otherwise unavailable.

; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
npj Quantum Materials
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way toquantum liquids with exotic entanglementthrough two known mechanisms of frustration: geometric frustration in lattices with triangle motifs, and spin-orbit-coupling frustration in the exactly solvable quantum liquid of Kitaev’s honeycomb lattice. Here we present the experimental observation of a new kind of frustrated quantum liquid arising in an unlikely place: the magnetic insulator Ba4Ir3O10where Ir3O12trimers form an unfrustrated square lattice. The crystal structure shows no apparent spin chains. Experimentally we find a quantum liquid state persisting down to 0.2 K that is stabilized by strong antiferromagnetic interaction with Curie–Weiss temperature ranging from −766 to −169 K due to magnetic anisotropy. The anisotropy-averaged frustration parameter is 2000, seldom seen in iridates. Heat capacity and thermal conductivity are both linear at low temperatures, a familiar feature in metals but here in an insulator pointing to an exotic quantum liquid state; a mere 2% Sr substitution for Ba produces long-range order at 130 K and destroys the linear-T features. Although the Ir4+(5d5) ions in Ba4Ir3O10appear to form Ir3O12trimers of face-sharing IrO6octahedra, we propose that intra-trimer exchange is reduced and the lattice recombines into an array of coupled 1Dmore »chains with additional spins. An extreme limit of decoupled 1D chains can explain most but not all of the striking experimental observations, indicating that the inter-chain coupling plays an important role in the frustration mechanism leading to this quantum liquid.

    « less
  2. Abstract

    Search for novel electronically ordered states of matter emerging near quantum phase transitions is an intriguing frontier of condensed matter physics. In ruthenates, the interplay between Coulomb correlations among the 4delectronic states and their spin-orbit interactions, lead to complex forms of electronic phenomena. Here we investigate the double layered Sr3(Ru1−xMnx)2O7and its doping-induced quantum phase transition from a metal to an antiferromagnetic Mott insulator. Using spectroscopic imaging with the scanning tunneling microscope, we visualize the evolution of the electronic states in real- and momentum-space. We find a partial-gap at the Fermi energy that develops with doping to form a weak Mott insulating state. Near the quantum phase transition, we discover a spatial electronic reorganization into a commensurate checkerboard charge order. These findings bear a resemblance to the universal charge order in the pseudogap phase of cuprates and demonstrate the ubiquity of charge order that emanates from doped Mott insulators.

  3. Abstract

    While 3d-containing materials display strong electron correlations, narrow band widths, and robust magnetism, 5dsystems are recognized for strong spin–orbit coupling, increased hybridization, and more diffuse orbitals. Combining these properties leads to novel behavior. Sr3NiIrO6, for example, displays complex magnetism and ultra-high coercive fields—up to an incredible 55 T. Here, we combine infrared and optical spectroscopies with high-field magnetization and first-principles calculations to explore the fundamental excitations of the lattice and related coupling processes including spin–lattice and electron–phonon mechanisms. Magneto-infrared spectroscopy reveals spin–lattice coupling of three phonons that modulate the Ir environment to reduce the energy required to modify the spin arrangement. While these modes primarily affect exchange within the chains, analysis also uncovers important inter-chain motion. This provides a mechanism by which inter-chain interactions can occur in the developing model for ultra-high coercivity. At the same time, analysis of the on-site Ir4+excitations reveals vibronic coupling and extremely large crystal field parameters that lead to at2g-derived low-spin state for Ir. These findings highlight the spin–charge–lattice entanglement in Sr3NiIrO6and suggest that similar interactions may take place in other 3d/5dhybrids.

  4. Abstract

    Owing to their overall low energy scales, flexible molecular architectures, and ease of chemical substitution, molecule-based multiferroics are extraordinarily responsive to external stimuli and exhibit remarkably rich phase diagrams. Even so, the stability and microscopic properties of various magnetic states in close proximity to quantum critical points are highly under-explored in these materials. Inspired by these opportunities, we combined pulsed-field magnetization, first-principles calculations, and numerical simulations to reveal the magnetic field–temperature (BT) phase diagram of multiferroic (NH4)2FeCl5⋅H2O. In this system, a network of intermolecular hydrogen and halogen bonds creates a competing set of exchange interactions that generates additional structure in the phase diagram—both in the vicinity of the spin flop and near the 30 T transition to the fully saturated state. Consequently, the phase diagrams of (NH4)2FeCl5⋅H2O and its deuterated analog are much more complex than those of other molecule-based multiferroics. The entire series of coupled electric and magnetic transitions can be accessed with a powered magnet, opening the door to exploration and control of properties in this and related materials.

  5. Abstract

    Nonlinear photocurrent in time-reversal invariant noncentrosymmetric systems such as ferroelectric semimetals sparked tremendous interest of utilizing nonlinear optics to characterize condensed matter with exotic phases. Here we provide a microscopic theory of two types of second-order nonlinear direct photocurrents, magnetic shift photocurrent (MSC) and magnetic injection photocurrent (MIC), as the counterparts of normal shift current (NSC) and normal injection current (NIC) in time-reversal symmetry and inversion symmetry broken systems. We show that MSC is mainly governed by shift vector and interband Berry curvature, and MIC is dominated by absorption strength and asymmetry of the group velocity difference at time-reversed ±kpoints. Taking$${\cal{P}}{\cal{T}}$$PT-symmetric magnetic topological quantum material bilayer antiferromagnetic (AFM) MnBi2Te4as an example, we predict the presence of large MIC in the terahertz (THz) frequency regime which can be switched between two AFM states with time-reversed spin orderings upon magnetic transition. In addition, external electric field breaks$${\cal{P}}{\cal{T}}$$PTsymmetry and enables large NSC response in bilayer AFM MnBi2Te4, which can be switched by external electric field. Remarkably, both MIC and NSC are highly tunable under varying electric field due to the field-induced large Rashba and Zeeman splitting, resulting in large nonlinear photocurrent response down to a few THz regime, suggesting bilayer AFM-zMnBi2Te4as amore »tunable platform with rich THz and magneto-optoelectronic applications. Our results reveal that nonlinear photocurrent responses governed by NSC, NIC, MSC, and MIC provide a powerful tool for deciphering magnetic structures and interactions which could be particularly fruitful for probing and understanding magnetic topological quantum materials.

    « less