We report quantum phenomena in spin-orbit-coupled single crystals that are synthesized using an innovative technology that “field-alters” crystal structures via application of magnetic field during crystal growth. This study addresses a major challenge facing the research community today: A great deal of theoretical work predicting exotic states for strongly spin-orbit-coupled, correlated materials has thus far met very limited experimental confirmation. These conspicuous discrepancies are due in part to the extreme sensitivity of these materials to structural distortions. The results presented here demonstrate that the field-altered materials not only are much less distorted but also exhibit phenomena absent in theirmore »
Quantum spin systems such as magnetic insulators usually show magnetic order, but such classical states can give way to
- Award ID(s):
- 1903888
- Publication Date:
- NSF-PAR ID:
- 10216751
- Journal Name:
- npj Quantum Materials
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2397-4648
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Strong electronic interactions can drive a system into a state with a symmetry breaking. Lattice frustration or competing interactions tend to prevent symmetry breaking, leading to quantum disordered phases. In spin systems frustration can produce a spin liquid state. Frustration of a charge degree of freedom also can result in various exotic states, however, experimental data on these effects is scarce. In this work we demonstrate how in a Mott insulator on a weakly anisotropic triangular lattice a charge ordered state melts on cooling down to low temperatures. Raman scattering spectroscopy finds that
-(BEDT-TTF)$$\kappa$$ Hg(SCN)$${}_{2}$$ Cl enters an insulating “dipole solid” statemore »$${}_{2}$$ -
Abstract With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba 3 CoSb 2 O 9 , a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba 2.87 Sr 0.13 CoSb 2 O 9 with Sr doping on non-magnetic Ba 2+ ion sites. The results show that Ba 2.87 Sr 0.13 CoSb 2 O 9 exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field withmore »
-
Abstract The bond-disordered Kitaev model attracts much attention due to the experimental relevance in
α -RuCl3andA 3LiIr2O6(A = H, D, Ag, etc.). Applying a magnetic field to break the time-reversal symmetry leads to a strong modulation in mass terms for Dirac cones. Because of the smallness of the flux gap of the Kitaev model, a small bond disorder can have large influence on itinerant Majorana fermions. The quantization of the thermal Hall conductivityκ x y /T disappears by a quantum Hall transition induced by a small disorder, andκ x y /T shows a rapid crossover into a state with a negligible Hall current. We call this immobile liquid state Anderson–Kitaev spin liquidmore » -
Abstract Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long-range magnetic order in the family of pyrochlore iridates. As a consequence, Pr2Ir2O7lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits an array of complex phenomena including the Kondo effect, biquadratic band structure, and metallic spin liquid. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning, density functional theory and theoretical modeling, we probe the local electronic states in Pr2Ir2O7and find an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. These spatialmore »