skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FMKit: An In-Air-Handwriting Analysis Library and Data Repository
Hand-gesture and in-air-handwriting provide ways for users to input information in Augmented Reality (AR) and Virtual Reality (VR) applications where a physical keyboard or a touch screen is unavailable. However, understanding the movement of hands and fingers is challenging, which requires a large amount of data and data-driven models. In this paper, we propose an open research infrastructure named FMKit for in-air-handwriting analysis, which contains a set of Python libraries and a data repository collected from over 180 users with two different types of motion capture sensors. We also present three research tasks enabled by FMKit, including in-air-handwriting based user authentication, user identification, and word recognition, and preliminary baseline performance.  more » « less
Award ID(s):
1925709
PAR ID:
10201288
Author(s) / Creator(s):
Date Published:
Journal Name:
CVPR Workshop on Computer Vision for Augmented and Virtual Reality, 2020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Hand-gesture and in-air-handwriting provide ways for users to input information in Augmented Reality (AR) and Virtual Reality (VR) applications where a physical keyboard or a touch screen is unavailable. However, understanding the movement of hands and fingers is challenging, which requires a large amount of data and data-driven models. In this paper, we propose an open research infrastructure named FMKit for in-air-handwriting analysis, which contains a set of Python libraries and a data repository collected from over 180 users with two different types of motion capture sensors. We also present three research tasks enabled by FMKit, including in-air-handwriting based user authentication, user identification, and word recognition, and preliminary baseline performance. 
    more » « less
  2. This paper presents the design and implementation of Scribe, a comprehensive voice processing and handwriting interface for voice assistants. Distinct from prior works, Scribe is a precise tracking interface that can co-exist with the voice interface on low sampling rate voice assistants. Scribe can be used for 3D free-form drawing, writing, and motion tracking for gaming. Taking handwriting as a specific application, it can also capture natural strokes and the individualized style of writing while occupying only a single frequency. The core technique includes an accurate acoustic ranging method called Cross Frequency Continuous Wave (CFCW) sonar, enabling voice assistants to use ultrasound as a ranging signal while using the regular microphone system of voice assistants as a receiver. We also design a new optimization algorithm that only requires a single frequency for time difference of arrival. Scribe prototype achieves 73 μm of median error for 1D ranging and 1.4 mm of median error in 3D tracking of an acoustic beacon using the microphone array used in voice assistants. Our implementation of an in-air handwriting interface achieves 94.1% accuracy with automatic handwriting-to-text software, similar to writing on paper (96.6%). At the same time, the error rate of voice-based user authentication only increases from 6.26% to 8.28%. 
    more » « less
  3. Virtual reality (VR) simulations have been adopted to provide controllable environments for running augmented reality (AR) experiments in diverse scenarios. However, insufficient research has explored the impact of AR applications on users, especially their attention patterns, and whether VR simulations accurately replicate these effects. In this work, we propose to analyze user attention patterns via eye tracking during XR usage. To represent applications that provide both helpful guidance and irrelevant information, we built a Sudoku Helper app that includes visual hints and potential distractions during the puzzle-solving period. We conducted two user studies with 19 different users each in AR and VR, in which we collected eye tracking data, conducted gaze-based analysis, and trained machine learning (ML) models to predict user attentional states and attention control ability. Our results show that the AR app had a statistically significant impact on enhancing attention by increasing the fixated proportion of time, while the VR app reduced fixated time and made the users less focused. Results indicate that there is a discrepancy between VR simulations and the AR experience. Our ML models achieve 99.3% and 96.3% accuracy in predicting user attention control ability in AR and VR, respectively. A noticeable performance drop when transferring models trained on one medium to the other further highlights the gap between the AR experience and the VR simulation of it. 
    more » « less
  4. We present a design-based exploration of the potential to reinterpret glyph-based visualization of scalar fields on 3D surfaces, a traditional scientific visualization technique, as a data physicalization technique. Even with the best virtual reality displays, users often struggle to correctly interpret spatial relationships in 3D datasets; thus, we are motivated to understand the extent to which traditional scientific visualization methods can translate to physical media where users may simultaneously leverage their visual systems and tactile senses to, in theory, better understand and connect with the data of interest. This pictorial traces the process of our design for a specific user study experiment: (1) inspiration, (2) exploring the data physicalization design space, (3) prototyping with 3D printing, (4) applying the techniques to different synthetic datasets. We call our most recent and compelling visual/tactile design boxcars on potatoes, and the next step in the research is to run a user-based evaluation to elucidate how this design compares to several of the others pictured here. 
    more » « less
  5. Research has identified applications of handheld-based VR, which utilizes handheld displays or mobile devices, for developing systems that involve users in mixed reality (MR) without the need for head-worn displays (HWDs). Such systems can potentially accommodate large groups of users participating in MR. However, we lack an understanding of how group sizes and interaction methods affect the user experience. In this paper, we aim to advance our understanding of handheld-based MR in the context of multiplayer, co-located games. We conducted a study (N = 38) to understand how user experiences vary by group size (2, 4, and 8) and interaction method (proximity-based or pointing-based). For our experiment, we implemented a multiuser experience for up to ten users. We found that proximity-based interaction that encouraged dynamic movement positively affected social presence and physical/temporal workload. In bigger group settings, participants felt less challenged and less positive. Individuals had varying preferences for group size and interaction type. The findings of the study will advance our understanding of the design space for handheld-based MR in terms of group sizes and interaction schemes. To make our contributions explicit, we conclude our paper with design implications that can inform user experience design in handheld-based mixed reality contexts. 
    more » « less