skip to main content

Title: Boxcars on Potatoes: Exploring the Design Language for Tangible Visualizations of Scalar Data Fields on 3D Surfaces
We present a design-based exploration of the potential to reinterpret glyph-based visualization of scalar fields on 3D surfaces, a traditional scientific visualization technique, as a data physicalization technique. Even with the best virtual reality displays, users often struggle to correctly interpret spatial relationships in 3D datasets; thus, we are motivated to understand the extent to which traditional scientific visualization methods can translate to physical media where users may simultaneously leverage their visual systems and tactile senses to, in theory, better understand and connect with the data of interest. This pictorial traces the process of our design for a specific user study experiment: (1) inspiration, (2) exploring the data physicalization design space, (3) prototyping with 3D printing, (4) applying the techniques to different synthetic datasets. We call our most recent and compelling visual/tactile design boxcars on potatoes, and the next step in the research is to run a user-based evaluation to elucidate how this design compares to several of the others pictured here.
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the IEEE VIS 2018 Workshop: Toward a Design Language for Data Physicalization
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce Artifact-Based Rendering (ABR), a framework of tools, algorithms, and processes that makes it possible to produce real, data-driven 3D scientific visualizations with a visual language derived entirely from colors, lines, textures, and forms created using traditional physical media or found in nature. A theory and process for ABR is presented to address three current needs: (i) designing better visualizations by making it possible for non-programmers to rapidly design and critique many alternative data-to-visual mappings; (ii) expanding the visual vocabulary used in scientific visualizations to depict increasingly complex multivariate data; (iii) bringing a more engaging, natural, and human-relatable handcrafted aesthetic to data visualization. New tools and algorithms to support ABR include front-end applets for constructing artifact-based colormaps, optimizing 3D scanned meshes for use in data visualization, and synthesizing textures from artifacts. These are complemented by an interactive rendering engine with custom algorithms and interfaces that demonstrate multiple new visual styles for depicting point, line, surface, and volume data. A within-the-research-team design study provides early evidence of the shift in visualization design processes that ABR is believed to enable when compared to traditional scientific visualization systems. Qualitative user feedback on applications to climate science and brain imaging support the utilitymore »of ABR for scientific discovery and public communication.« less
  2. This paper introduces a web-based interactive educational platform for 3D/polyhedral graphic statics (PGS) [1]. The Block Research Group (BRG) at ETH Zürich developed a dynamic learning and teaching platform for structural design. This tool is based on traditional graphic statics. It uses interactive 2D drawings to help designers and engineers with all skill levels to understand and utilize the methods [2]. However, polyhedral graphic statics is not easy to learn because of its characteristics in three-dimensional. All the existing computational design tools are heavily dependent on the modeling software such as Rhino or the Python-based computational framework like Compass [3]. In this research, we start with the procedural approach, developing libraries using JavaScript, Three.js, and WebGL to facilitate the construction by making it independent from any software. This framework is developed based on the mathematical and computational algorithms deriving the global equilibrium of the structure, optimizing the balanced relationship between the external magnitudes and the internal forces, visualizing the dynamic reciprocal polyhedral diagrams with corresponding topological data. This instant open-source application and the visualization interface provide a more operative platform for students, educators, practicers, and designers in an interactive manner, allowing them to learn not only the topological relationship butmore »also to deepen their knowledge and understanding of structures in the steps for the construction of the form and force diagrams and analyze it. In the simplified single-node example, the multi-step geometric procedures intuitively illustrate 3D structural reciprocity concepts. With the intuitive control panel, the user can move the constraint point’s location through the inserted gumball function, the force direction of the form diagram will be dynamically changed from compression-only to tension and compression combined. Users can also explore and design innovative, efficient spatial structures with changeable boundary conditions and constraints through real-time manipulating both force distribution and geometric form, such as adding the number of supports or subdividing the global equilibrium in the force diagram. Eventually, there is an option to export the satisfying geometry as a suitable format to share with other fabrication tools. As the online educational environment with different types of geometric examples, it is valuable to use graphical approaches to teach the structural form in an exploratory manner.« less
  3. Vast volumes of data are produced by today’s scientific simulations and advanced instruments. These data cannot be stored and transferred efficiently because of limited I/O bandwidth, network speed, and storage capacity. Error-bounded lossy compression can be an effective method for addressing these issues: not only can it significantly reduce data size, but it can also control the data distortion based on user-defined error bounds. In practice, many scientific applications have specific requirements or constraints for lossy compression, in order to guarantee that the reconstructed data are valid for post hoc analysis. For example, some datasets contain irrelevant data that should be isolated in particular and users often have intuition regarding value ranges, geospatial regions, and other data subsets that are crucial for subsequent analysis. Existing state-of-the-art error-bounded lossy compressors, however, do not consider these constraints during compression, resulting in inferior compression ratios with respect to user’s post hoc analysis, due to the fact that the data itself provides little or no value for post hoc analysis. In this work we address this issue by proposing an optimized framework that can preserve diverse constraints during the error-bounded lossy compression, e.g., cleaning the irrelevant data, efficiently preserving different precision for multiple valuemore »intervals, and allowing users to set diverse precision over both regular and irregular regions. We perform our evaluation on a supercomputer with up to 2,100 cores. Experiments with six real-world applications show that our proposed diverse constraints based error-bounded lossy compressor can obtain a higher visual quality or data fidelity on reconstructed data with the same or even higher compression ratios compared with the traditional state-of-the-art compressor SZ. Our experiments also demonstrate very good scalability in compression performance compared with the I/O throughput of the parallel file system.« less
  4. Most visual analytics systems assume that all foraging for data happens before the analytics process; once analysis begins, the set of data attributes considered is fixed. Such separation of data construction from analysis precludes iteration that can enable foraging informed by the needs that arise in-situ during the analysis. The separation of the foraging loop from the data analysis tasks can limit the pace and scope of analysis. In this paper, we present CAVA, a system that integrates data curation and data augmentation with the traditional data exploration and analysis tasks, enabling information foraging in-situ during analysis. Identifying attributes to add to the dataset is difficult because it requires human knowledge to determine which available attributes will be helpful for the ensuing analytical tasks. CAVA crawls knowledge graphs to provide users with a a broad set of attributes drawn from external data to choose from. Users can then specify complex operations on knowledge graphs to construct additional attributes. CAVA shows how visual analytics can help users forage for attributes by letting users visually explore the set of available data, and by serving as an interface for query construction. It also provides visualizations of the knowledge graph itself to help usersmore »understand complex joins such as multi-hop aggregations. We assess the ability of our system to enable users to perform complex data combinations without programming in a user study over two datasets. We then demonstrate the generalizability of CAVA through two additional usage scenarios. The results of the evaluation confirm that CAVA is effective in helping the user perform data foraging that leads to improved analysis outcomes, and offer evidence in support of integrating data augmentation as a part of the visual analytics pipeline.« less
  5. We increasingly rely on up-to-date, data-driven graphs to understand our environments and make informed decisions. However, many of the methods blind and visually impaired users (BVI) rely on to access data-driven information do not convey important shape-characteristics of graphs, are not refreshable, or are prohibitively expensive. To address these limitations, we introduce two refreshable, 1-DOF audio-haptic interfaces based on haptic cues fundamental to object shape perception. Slide-tone uses finger position with sonification, and Tilt-tone uses fingerpad contact inclination with sonification to provide shape feedback to users. Through formative design workshops (n = 3) and controlled evaluations (n = 8), we found that BVI participants appreciated the additional shape information, versatility, and reinforced understanding these interfaces provide; and that task accuracy was comparable to using interactive tactile graphics or sonification alone. Our research offers insight into the benefits, limitations, and considerations for adopting these haptic cues into a data visualization context.