The Capacity of Smartphone Peer-to-Peer Networks
- Award ID(s):
- 1733842
- NSF-PAR ID:
- 10201370
- Date Published:
- Journal Name:
- Proceedings of the International Symposium on Distributed Computing (DISC)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Tran, Duc ; Thai, My ; Krishnamachari, Bhaskar (Ed.)The security and performance of blockchain systems such as Bitcoin critically rely on the P2P network. This paper aims to investigate blockchain P2P networks. We explore the topologies, peer discovery, and data forwarding and examine the security and performance of the P2P network. Further, we formulate an optimization problem to study the theoretical limit of the performance and provide a solution to achieve optimal performance in a blockchain P2P network.more » « less
-
In this paper, we study the fundamental problem of gossip in the mobile telephone model: a recently introduced variation of the classical telephone model modified to better describe the local peer-to-peer communication services implemented in many popular smartphone operating systems. In more detail, the mobile telephone model differs from the classical telephone model in three ways: (1) each device can participate in at most one connection per round; (2) the network topology can undergo a parameterized rate of change; and (3) devices can advertise a parameterized number of bits about their state to their neighbors in each round before connection attempts are initiated. We begin by describing and analyzing new randomized gossip algorithms in this model under the harsh assumption of a network topology that can change completely in every round. We prove a significant time complexity gap between the case where nodes can advertise 0 bits to their neighbors in each round, and the case where nodes can advertise 1 bit. For the latter assumption, we present two solutions: the first depends on a shared randomness source, while the second eliminates this assumption using a pseudorandomness generator we prove to exist with a novel generalization of a classical result from the study of two-party communication complexity. We then turn our attention to the easier case where the topology graph is stable, and describe and analyze a new gossip algorithm that provides a substantial performance improvement for many parameters. We conclude by studying a relaxed version of gossip in which it is only necessary for nodes to each learn a specified fraction of the messages in the system. We prove that our existing algorithms for dynamic network topologies and a single advertising bit solve this relaxed version up to a polynomial factor faster (in network size) for many parameters. These are the first known gossip results for the mobile telephone model, and they significantly expand our understanding of how to communicate and coordinate in this increasingly relevant setting.more » « less
-
null (Ed.)In comparison with conventional content delivery networks, peer-to-peer (p2p) content delivery is promising to save cost and handle high peak-demand, and can also complement the decentralized storage networks such as Filecoin. However, reliable p2p delivery requires proper enforcement of delivery fairness, i.e., the deliverers should be rewarded according to their in-time delivery. Unfortunately, most existing studies on delivery fairness are based on non-cooperative game-theoretic assumptions that are arguably unrealistic in the ad-hoc p2p setting. We for the first time put forth an expressive yet still minimalist security notion for desired fair p2p content delivery, and give two efficient solutions π₯πΊπππ£ππππ ππΊπ½ and π₯πΊπππ²πππΎπΊπ via the blockchain for p2p downloading and p2p streaming scenarios, respectively. Our designs not only guarantee delivery fairness to ensure deliverers be paid (nearly) proportional to their in-time delivery but also ensure the content consumers and content providers are fairly treated. The fairness of each party can be guaranteed when the other two parties collude to arbitrarily misbehave. Moreover, the systems are efficient in the sense of attaining nearly asymptotically optimal on-chain costs and deliverer communication. We implement the protocols and build the prototype systems atop the Ethereum Ropsten network. Extensive experiments done in LAN and WAN settings showcase their high practicality.more » « less