Abstract Iron‐nitrogen‐carbon (Fe‐N‐C) single‐atom catalysts are promising sustainable alternatives to the costly and scarce platinum (Pt) to catalyze the oxygen reduction reactions (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). However, Fe‐N‐C cathodes for PEMFC are made thicker than Pt/C ones, in order to compensate for the lower intrinsic ORR activity and site density of Fe‐N‐C materials. The thick electrodes are bound with mass transport issues that limit their performance at high current densities, especially in H2/air PEMFCs. Practical Fe‐N‐C electrodes must combine high intrinsic ORR activity, high site density, and fast mass transport. Herein, it has achieved an improved combination of these properties with a Fe‐N‐C catalyst prepared via a two‐step synthesis approach, constructing first a porous zinc‐nitrogen‐carbon (Zn‐N‐C) substrate, followed by transmetallating Zn by Fe via chemical vapor deposition. A cathode comprising this Fe‐N‐C catalyst has exhibited a maximum power density of 0.53 W cm−2in H2/air PEMFC at 80 °C. The improved power density is associated with the hierarchical porosity of the Zn‐N‐C substrate of this work, which is achieved by epitaxial growth of ZIF‐8 onto g‐C3N4, leading to a micro‐mesoporous substrate. 
                        more » 
                        « less   
                    
                            
                            Iron and nitrogen-doped double gyroid mesoporous carbons for oxygen reduction in acidic environments
                        
                    
    
            Abstract Iron- and nitrogen-doped carbon (Fe-N-C) represents a promising class of alternative electrocatalysts to noble metals for the oxygen reduction reaction (ORR) in acidic environments. To make Fe-N-C active, one of the most critical parameters is microporosity, which must be controlled to maximize the active site density. However, the use of microporosity must be optimized for the requirement of high-flux mass transport. Here, we synthesized and demonstrated gyroidal mesoporous Fe-N-C with microporous pore walls as an avenue to combine a high active-site density with favorable mass transport at high flux. The gyroidal mesoporous Fe-N-C catalysts have competitive gravimetric and volumetric ORR activities, comparable to the ORR activity obtained in purely microporous configurations despite having mesoporous features. Our result suggests that the ORR activity of microporous Fe-N-C electrocatalysts can be combined with mesoporosity through the use of mesoporous Fe-N-C with microporous pore walls. We further investigate effects of the nitrogen incorporation method on mesoporous N-doped carbon electrocatalysts. We find that despite having ∼2 × higher N concentration, nitrogen incorporationviaNH3yields similar ORR activity to incorporationviaa chemical additive, a finding we attribute to the role of pyridinic and quaternary N in the ORR. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1665305
- PAR ID:
- 10201550
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Physics: Energy
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2515-7655
- Page Range / eLocation ID:
- Article No. 015001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Clusters of nitrogen- and carbon-coordinated transition metals dispersed in a carbon matrix (e. g., Fe−N−C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen-coordinated transition metal clusters embedded in a more stable and corrosion-resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe−N−C catalysts. Utilizing first-principles calculations, an electrostatics-based descriptor of catalytic activity was identified, and nitrogen-coordinated iron (FeN4) clusters embedded in a TiC matrix were predicted to be an efficient platinum-group metal (PGM)-free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor-derived theoretical predictions. The Fe−N−TiC catalyst exhibited enhanced activity (20 %) and durability (3.5-fold improvement) compared to a traditional Fe−N−C catalyst. It was posited that the electrostatics-based descriptor provides a powerful platform for the design of active and stable PGM-free electrocatalysts and heterogenous single-atom catalysts for other electrochemical reactions.more » « less
- 
            Abstract Clusters of nitrogen‐ and carbon‐coordinated transition metals dispersed in a carbon matrix (e. g., Fe−N−C) have emerged as an inexpensive class of electrocatalysts for the oxygen reduction reaction (ORR). Here, it was shown that optimizing the interaction between the nitrogen‐coordinated transition metal clusters embedded in a more stable and corrosion‐resistant carbide matrix yielded an ORR electrocatalyst with enhanced activity and stability compared to Fe−N−C catalysts. Utilizing first‐principles calculations, an electrostatics‐based descriptor of catalytic activity was identified, and nitrogen‐coordinated iron (FeN4) clusters embedded in a TiC matrix were predicted to be an efficient platinum‐group metal (PGM)‐free ORR electrocatalyst. Guided by theory, selected catalyst formulations were synthesized, and it was demonstrated that the experimentally observed trends in activity fell exactly in line with the descriptor‐derived theoretical predictions. The Fe−N−TiC catalyst exhibited enhanced activity (20 %) and durability (3.5‐fold improvement) compared to a traditional Fe−N−C catalyst. It was posited that the electrostatics‐based descriptor provides a powerful platform for the design of active and stable PGM‐free electrocatalysts and heterogenous single‐atom catalysts for other electrochemical reactions.more » « less
- 
            null (Ed.)Iron single atom catalysts have emerged as one of the most active electrocatalysts towards the oxygen reduction reaction (ORR), but the unsatisfactory durability and limited activity for the oxygen evolution reaction (OER) has hampered their commercial applications in rechargeable metal–air batteries. By contrast, cobalt-based catalysts are known to afford excellent ORR stability and OER activity, due to the weak Fenton reaction and low OER Gibbs free energy. Herein, a bimetal hydrogel template is used to prepare carbon aerogels containing Fe–Co bimetal sites (NCAG/Fe–Co) as bifunctional electrocatalysts towards both ORR and OER, with enhanced activity and stability, as compared to the monometal counterparts. High-resolution transmission electron microscopy, elemental mapping and X-ray photoelectron spectroscopy measurements demonstrate homogeneous distributions of the metal centers within defected carbon lattices by coordination to nitrogen dopants. X-ray absorption spectroscopic measurements, in combination with other results, suggest the formation of FeN 3 and CoN 3 moieties on mutually orthogonal planes with a direct Fe–Co bonding interaction. Electrochemical measurements show that NCAG/Fe–Co delivers a small ORR/OER potential gap of only 0.64 V at the current density of 10 mA cm −2 , 60 mV lower than that (0.70 V) with commercial Pt/C and RuO 2 catalysts. When applied in a flexible Zn–air battery, the dual-metal NCAG/Fe–Co catalyst also shows a remarkable performance, with a high open-circuit voltage of 1.47 V, a maximum power density of 117 mW cm −2 , as well as good rechargeability and flexibility. Results from this study may offer an ingenious protocol in the design and engineering of highly efficient and durable bifunctional electrocatalysts based on dual metal-doped carbons.more » « less
- 
            Platinum group metal-free (PGM-free) catalysts for the oxygen reduction reaction (ORR) with atomically dispersed FeN 4 sites have emerged as a potential replacement for low-PGM catalysts in acidic polymer electrolyte fuel cells (PEFCs). In this work, we carefully tuned the doped Fe content in zeolitic imidazolate framework (ZIF)-8 precursors and achieved complete atomic dispersion of FeN 4 sites, the sole Fe species in the catalyst based on Mößbauer spectroscopy data. The Fe–N–C catalyst with the highest density of active sites achieved respectable ORR activity in rotating disk electrode (RDE) testing with a half-wave potential ( E 1/2 ) of 0.88 ± 0.01 V vs. the reversible hydrogen electrode (RHE) in 0.5 M H 2 SO 4 electrolyte. The activity degradation was found to be more significant when holding the potential at 0.85 V relative to standard potential cycling (0.6–1.0 V) in O 2 saturated acid electrolyte. The post-mortem electron microscopy analysis provides insights into possible catalyst degradation mechanisms associated with Fe–N coordination cleavage and carbon corrosion. High ORR activity was confirmed in fuel cell testing, which also divulged the promising performance of the catalysts at practical PEFC voltages. We conclude that the key factor behind the high ORR activity of the Fe–N–C catalyst is the optimum Fe content in the ZIF-8 precursor. While too little Fe in the precursors results in an insufficient density of FeN 4 sites, too much Fe leads to the formation of clusters and an ensuing significant loss in catalytic activity due to the loss of atomically dispersed Fe to inactive clusters or even nanoparticles. Advanced electron microscopy was used to obtain insights into the clustering of Fe atoms as a function of the doped Fe content. The Fe content in the precursor also affects other key catalyst properties such as the particle size, porosity, nitrogen-doping level, and carbon microstructure. Thanks to using model catalysts exclusively containing FeN 4 sites, it was possible to directly correlate the ORR activity with the density of FeN 4 species in the catalyst.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
