skip to main content

Title: High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites
Platinum group metal-free (PGM-free) catalysts for the oxygen reduction reaction (ORR) with atomically dispersed FeN 4 sites have emerged as a potential replacement for low-PGM catalysts in acidic polymer electrolyte fuel cells (PEFCs). In this work, we carefully tuned the doped Fe content in zeolitic imidazolate framework (ZIF)-8 precursors and achieved complete atomic dispersion of FeN 4 sites, the sole Fe species in the catalyst based on Mößbauer spectroscopy data. The Fe–N–C catalyst with the highest density of active sites achieved respectable ORR activity in rotating disk electrode (RDE) testing with a half-wave potential ( E 1/2 ) of 0.88 ± 0.01 V vs. the reversible hydrogen electrode (RHE) in 0.5 M H 2 SO 4 electrolyte. The activity degradation was found to be more significant when holding the potential at 0.85 V relative to standard potential cycling (0.6–1.0 V) in O 2 saturated acid electrolyte. The post-mortem electron microscopy analysis provides insights into possible catalyst degradation mechanisms associated with Fe–N coordination cleavage and carbon corrosion. High ORR activity was confirmed in fuel cell testing, which also divulged the promising performance of the catalysts at practical PEFC voltages. We conclude that the key factor behind the high ORR activity of more » the Fe–N–C catalyst is the optimum Fe content in the ZIF-8 precursor. While too little Fe in the precursors results in an insufficient density of FeN 4 sites, too much Fe leads to the formation of clusters and an ensuing significant loss in catalytic activity due to the loss of atomically dispersed Fe to inactive clusters or even nanoparticles. Advanced electron microscopy was used to obtain insights into the clustering of Fe atoms as a function of the doped Fe content. The Fe content in the precursor also affects other key catalyst properties such as the particle size, porosity, nitrogen-doping level, and carbon microstructure. Thanks to using model catalysts exclusively containing FeN 4 sites, it was possible to directly correlate the ORR activity with the density of FeN 4 species in the catalyst. « less
Authors:
; ; ; ; ; ; ;
Award ID(s):
1804326
Publication Date:
NSF-PAR ID:
10177042
Journal Name:
Energy & Environmental Science
Volume:
12
Issue:
8
Page Range or eLocation-ID:
2548 to 2558
ISSN:
1754-5692
Sponsoring Org:
National Science Foundation
More Like this
  1. Proton-exchange membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs) are promising power sources from portable electronic devices to vehicles. The high-cost issue of these low-temperature fuel cells can be primarily addressed by using platinum-group metal (PGM)-free oxygen reduction reaction (ORR) catalysts, in particular atomically dispersed metal–nitrogen–carbon (M–N–C, M = Fe, Co, Mn). Furthermore, a significant advantage of M–N–C catalysts is their superior methanol tolerance over Pt, which can mitigate the methanol cross-over effect and offer great potential of using a higher concentration of methanol in DMFCs. Here, we investigated the ORR catalytic properties of M–N–C catalysts in methanol-containingmore »acidic electrolytes via experiments and density functional theory (DFT) calculations. FeN 4 sites demonstrated the highest methanol tolerance ability when compared to metal-free pyridinic N, CoN 4 , and MnN 4 active sites. The methanol adsorption on MN 4 sites is even strengthened when electrode potentials are applied during the ORR. The negative influence of methanol adsorption becomes significant for methanol concentrations higher than 2.0 M. However, the methanol adsorption does not affect the 4e − ORR pathway or chemically destroy the FeN 4 sites. The understanding of the methanol-induced ORR activity loss guides the design of promising M–N–C cathode catalyst in DMFCs. Accordingly, we developed a dual-metal site Fe/Co–N–C catalyst through a combined chemical-doping and adsorption strategy. Instead of generating a possible synergistic effect, the introduced Co atoms in the first doping step act as “scissors” for Zn removal in metal–organic frameworks (MOFs), which is crucial for modifying the porosity of the catalyst and providing more defects for stabilizing the active FeN 4 sites generated in the second adsorption step. The Fe/Co–N–C catalyst significantly improved the ORR catalytic activity and delivered remarkably enhanced peak power densities ( i.e. , 502 and 135 mW cm −2 ) under H 2 –air and methanol–air conditions, respectively, representing the best performance for both types of fuel cells. Notably, the fundamental understanding of methanol tolerance, along with the encouraging DMFC performance, will open an avenue for the potential application of atomically dispersed M–N–C catalysts in other direct alcohol or ammonia fuel cells.« less
  2. The urgent need to address the high-cost issue of proton-exchange membrane fuel cell (PEMFC) technologies, particularly for transportation applications, drives the development of simultaneously highly active and durable platinum group metal-free (PGM-free) catalysts and electrodes. The past decade has witnessed remarkable progress in exploring PGM-free cathode catalysts for the oxygen reduction reaction (ORR) to overcome sluggish kinetics and catalyst instability in acids. Among others, scientists have identified the newly emerging atomically dispersed transition metal (M: Fe, Co, or/and Mn) and nitrogen co-doped carbon (M–N–C) catalysts as the most promising alternative to PGM catalysts. Here, we provide a comprehensive review ofmore »significant breakthroughs, remaining challenges, and perspectives regarding the M–N–C catalysts in terms of catalyst activity, stability, and membrane electrode assembly (MEA) performance. A variety of novel synthetic strategies demonstrated effectiveness in improving intrinsic activity, increasing active site density, and attaining optimal porous structures of catalysts. Rationally designing and engineering the coordination environment of single metal MN x sites and their local structures are crucial for enhancing intrinsic activity. Increasing the site density relies on the innovative strategies of restricting the migration and agglomeration of single metal sites into metallic clusters. Relevant understandings provide the correlations among the nature of active sites, nanostructures, and catalytic activity of M–N–C catalysts at the atomic scale through a combination of experimentation and theory. Current knowledge of the transferring catalytic properties of M–N–C catalysts to MEA performance is limited. Rationally designing morphologic features of M–N–C catalysts play a vital role in boosting electrode performance through exposing more accessible active sites, realizing uniform ionomer distribution, and facilitating mass/proton transports. We outline future research directions concerning the comprehensive evaluation of M–N–C catalysts in MEAs. The most considerable challenge of current M–N–C catalysts is the unsatisfied stability and rapid performance degradation in MEAs. Therefore, we further discuss practical methods and strategies to mitigate catalyst and electrode degradation, which is fundamentally essential to make M–N–C catalysts viable in PEMFC technologies.« less
  3. One of the key challenges that hinders broad commercialization of proton exchange membrane fuel cells is the high cost and inadequate performance of the catalysts for the oxygen reduction reaction (ORR). Here we report a composite ORR catalyst consisting of ordered intermetallic Pt-alloy nanoparticles attached to an N-doped carbon substrate with atomically dispersed Fe–N–C sites, demonstrating substantially enhanced catalytic activity and durability, achieving a half-wave potential of 0.923 V ( vs.  RHE) and negligible activity loss after 5000 cycles of an accelerated durability test. The composite catalyst is prepared by deposition of Pt nanoparticles on an N-doped carbon substrate withmore »atomically dispersed Fe–N–C sites derived from a metal–organic framework and subsequent thermal treatment. The latter results in the formation of core–shell structured Pt-alloy nanoparticles with ordered intermetallic Pt 3 M (M = Fe and Zn) as the core and Pt atoms on the shell surface, which is beneficial to both the ORR activity and stability. The presence of Fe in the porous Fe–N–C substrate not only provides more active sites for the ORR but also effectively enhances the durability of the composite catalyst. The observed enhancement in performance is attributed mainly to the unique structure of the composite catalyst, as confirmed by experimental measurements and computational analyses. Furthermore, a fuel cell constructed using the as-developed ORR catalyst demonstrates a peak power density of 1.31 W cm −2 . The strategy developed in this work is applicable to the development of composite catalysts for other electrocatalytic reactions.« less
  4. Here we report a nitrogen-doped graphene modified metal-organic framework (N-G/MOF) catalyst, a promising metal-free electrocatalyst exhibiting the potential to replace the noble metal catalyst from the electrochemical systems; such as fuel cells and metal-air batteries. The catalyst was synthesized with a planetary ball milling method, in which the precursors nitrogen-functionalized graphene (N-G) and ZIF-8 are ground at an optimized grinding speed and time. The N-G/MOF catalyst not only inherited large surface area from the ZIF-8 structure, but also had chemical interactions, resulting in an improved Oxygen Reduction Reaction (ORR) electrocatalyst. Thermogravimetric Analysis (TGA) curves revealed that the N-G/MOF catalyst stillmore »had some unreacted ZIF-8 particles, and the high catalytic activity of N-G particles decreased the decomposition temperature of ZIF-8 in the N-G/MOF catalyst. Also, we present the durability study of the N-G/MOF catalyst under a saturated nitrogen and oxygen environment in alkaline medium. Remarkably, the catalyst showed no change in the performance after 2000 cycles in the N2 environment, exhibiting strong resistance to the corrosion. In the O2 saturated electrolyte, the performance loss at lower overpotentials was as low compared to higher overpotentials. It is expected that the catalyst degradation mechanism during the potential cycling is due to the oxidative attack of the ORR intermediates.« less
  5. Iron single atom catalysts have emerged as one of the most active electrocatalysts towards the oxygen reduction reaction (ORR), but the unsatisfactory durability and limited activity for the oxygen evolution reaction (OER) has hampered their commercial applications in rechargeable metal–air batteries. By contrast, cobalt-based catalysts are known to afford excellent ORR stability and OER activity, due to the weak Fenton reaction and low OER Gibbs free energy. Herein, a bimetal hydrogel template is used to prepare carbon aerogels containing Fe–Co bimetal sites (NCAG/Fe–Co) as bifunctional electrocatalysts towards both ORR and OER, with enhanced activity and stability, as compared to themore »monometal counterparts. High-resolution transmission electron microscopy, elemental mapping and X-ray photoelectron spectroscopy measurements demonstrate homogeneous distributions of the metal centers within defected carbon lattices by coordination to nitrogen dopants. X-ray absorption spectroscopic measurements, in combination with other results, suggest the formation of FeN 3 and CoN 3 moieties on mutually orthogonal planes with a direct Fe–Co bonding interaction. Electrochemical measurements show that NCAG/Fe–Co delivers a small ORR/OER potential gap of only 0.64 V at the current density of 10 mA cm −2 , 60 mV lower than that (0.70 V) with commercial Pt/C and RuO 2 catalysts. When applied in a flexible Zn–air battery, the dual-metal NCAG/Fe–Co catalyst also shows a remarkable performance, with a high open-circuit voltage of 1.47 V, a maximum power density of 117 mW cm −2 , as well as good rechargeability and flexibility. Results from this study may offer an ingenious protocol in the design and engineering of highly efficient and durable bifunctional electrocatalysts based on dual metal-doped carbons.« less