skip to main content


Title: Charge guides pathway selection in β-sheet fibrillizing peptide co-assembly
Abstract

Peptide co-assembly is attractive for creating biomaterials with new forms and functions. Emergence of these properties depends on the peptide content of the final assembled structure, which is difficult to predict in multicomponent systems. Here using experiments and simulations we show that charge governs content by affecting propensity for self- and co-association in binary CATCH(+/−) peptide systems. Equimolar mixtures of CATCH(2+/2−), CATCH(4+/4−), and CATCH(6+/6−) formed two-component β-sheets. Solid-state NMR suggested the cationic peptide predominated in the final assemblies. The cationic-to-anionic peptide ratio decreased with increasing charge. CATCH(2+) formed β-sheets when alone, whereas the other peptides remained unassembled. Fibrillization rate increased with peptide charge. The zwitterionic CATCH parent peptide, “Q11”, assembled slowly and only at decreased simulation temperature. These results demonstrate that increasing charge draws complementary peptides together faster, favoring co-assembly, while like-charged molecules repel. We foresee these insights enabling development of co-assembled peptide biomaterials with defined content and predictable properties.

 
more » « less
Award ID(s):
1743432
NSF-PAR ID:
10201695
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Chemistry
Volume:
3
Issue:
1
ISSN:
2399-3669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Peptide self-assembly, wherein molecule A associates with other A molecules to form fibrillar β-sheet structures, is common in nature and widely used to fabricate synthetic biomaterials. Selective coassembly of peptide pairs A and B with complementary partial charges is gaining interest due to its potential for expanding the form and function of biomaterials that can be realized. It has been hypothesized that charge-complementary peptides organize into alternating ABAB-type arrangements within assembled β-sheets, but no direct molecular-level evidence exists to support this interpretation. We report a computational and experimental approach to characterize molecular-level organization of the established peptide pair, CATCH. Discontinuous molecular dynamics simulations predict that CATCH(+) and CATCH(−) peptides coassemble but do not self-assemble. Two-layer β-sheet amyloid structures predominate, but off-pathway β-barrel oligomers are also predicted. At low concentration, transmission electron microscopy and dynamic light scattering identified nonfibrillar ∼20-nm oligomers, while at high concentrations elongated fibers predominated. Thioflavin T fluorimetry estimates rapid and near-stoichiometric coassembly of CATCH(+) and CATCH(−) at concentrations ≥100 μM. Natural abundance13C NMR and isotope-edited Fourier transform infrared spectroscopy indicate that CATCH(+) and CATCH(−) coassemble into two-component nanofibers instead of self-sorting. However,13C–13C dipolar recoupling solid-state NMR measurements also identify nonnegligible AA and BB interactions among a majority of AB pairs. Collectively, these results demonstrate that strictly alternating arrangements of β-strands predominate in coassembled CATCH structures, but deviations from perfect alternation occur. Off-pathway β-barrel oligomers are also suggested to occur in coassembled β-strand peptide systems.

     
    more » « less
  2. Levy, Yaakov Koby (Ed.)

    Co-assembling peptides can be crafted into supramolecular biomaterials for use in biotechnological applications, such as cell culture scaffolds, drug delivery, biosensors, and tissue engineering. Peptide co-assembly refers to the spontaneous organization of two different peptides into a supramolecular architecture. Here we use molecular dynamics simulations to quantify the effect of anionic amino acid type on co-assembly dynamics and nanofiber structure in binary CATCH(+/-) peptide systems. CATCH peptide sequences follow a general pattern: CQCFCFCFCQC, where all C’s are either a positively charged or a negatively charged amino acid. Specifically, we investigate the effect of substituting aspartic acid residues for the glutamic acid residues in the established CATCH(6E-) molecule, while keeping CATCH(6K+) unchanged. Our results show that structures consisting of CATCH(6K+) and CATCH(6D-) form flatter β-sheets, have stronger interactions between charged residues on opposing β-sheet faces, and have slower co-assembly kinetics than structures consisting of CATCH(6K+) and CATCH(6E-). Knowledge of the effect of sidechain type on assembly dynamics and fibrillar structure can help guide the development of advanced biomaterials and grant insight into sequence-to-structure relationships.

     
    more » « less
  3. null (Ed.)
    Injectable hydrogels are attractive for therapeutic delivery because they can be locally administered through minimally-invasive routes. Charge-complementary peptide nanofibers provide hydrogels that are suitable for encapsulation of biotherapeutics, such as cells and proteins, because they assemble under physiological temperature, pH, and ionic strength. However, relationships between the sequences of charge-complementary peptides and the physical properties of the hydrogels that they form are not well understood. Here we show that hydrogel viscoelasticity, pore size, and pore structure depend on the pairing of charge-complementary “CATCH(+/−)” peptides. Oscillatory rheology demonstrated that co-assemblies of CATCH(4+/4−), CATCH(4+/6−), CATCH(6+/4−), and CATCH(6+/6−) formed viscoelastic gels that can recover after high-shear and high-strain disruption, although the extent of recovery depends on the peptide pairing. Cryogenic scanning electron microscopy demonstrated that hydrogel pore size and pore wall also depend on peptide pairing, and that these properties change to different extents after injection. In contrast, no obvious correlation was observed between nanofiber charge state, measured with ζ-potential, and hydrogel physical properties. CATCH(4+/6−) hydrogels injected into the subcutaneous space elicited weak, transient inflammation whereas CATCH(6+/4−) hydrogels induced stronger inflammation. No antibodies were raised against the CATCH(4+) or CATCH(6−) peptides following multiple challenges in vehicle or when co-administered with an adjuvant. These results demonstrate that CATCH(+/−) peptides form biocompatible injectable hydrogels with viscoelastic properties that can be tuned by varying peptide sequence, establishing their potential as carriers for localized delivery of therapeutic cargoes. 
    more » « less
  4. Abstract

    Self‐assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side‐chain chemistry affects the hierarchical co‐assembly of a family of charge‐complementary β‐sheet‐forming peptide pairs known as CATCH(X+/Y−) at physiologic pH and ionic strength in water. In a concentration‐dependent manner, the CATCH(6K+) (Ac‐KQKFKFKFKQK‐Am) and CATCH(6D−) (Ac‐DQDFDFDFDQD‐Am) pair formed either β‐sheet‐rich microspheres or β‐sheet‐rich gels with a micron‐scale plate‐like morphology, which were not observed with other CATCH(X+/Y−) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N‐ and C‐terminal amino acids in CATCH(6K+) and CATCH(6D−) to Qs, increased observed co‐assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)‐green fluorescent protein fusions could be incorporated into the β‐sheet plates and microspheres formed by the CATCH(6K+/6D−) pair, demonstrating the potential to endow functionality.

     
    more » « less
  5. Abstract

    Self‐assembly of proteinaceous biomolecules into functional materials with ordered structures that span length scales is common in nature yet remains a challenge with designer peptides under ambient conditions. This report demonstrates how charged side‐chain chemistry affects the hierarchical co‐assembly of a family of charge‐complementary β‐sheet‐forming peptide pairs known as CATCH(X+/Y−) at physiologic pH and ionic strength in water. In a concentration‐dependent manner, the CATCH(6K+) (Ac‐KQKFKFKFKQK‐Am) and CATCH(6D−) (Ac‐DQDFDFDFDQD‐Am) pair formed either β‐sheet‐rich microspheres or β‐sheet‐rich gels with a micron‐scale plate‐like morphology, which were not observed with other CATCH(X+/Y−) pairs. This hierarchical order was disrupted by replacing D with E, which increased fibril twisting. Replacing K with R, or mutating the N‐ and C‐terminal amino acids in CATCH(6K+) and CATCH(6D−) to Qs, increased observed co‐assembly kinetics, which also disrupted hierarchical order. Due to the ambient assembly conditions, active CATCH(6K+)‐green fluorescent protein fusions could be incorporated into the β‐sheet plates and microspheres formed by the CATCH(6K+/6D−) pair, demonstrating the potential to endow functionality.

     
    more » « less