Abstract Deliberately blocking out a small portion of the incoming solar radiation would cool the climate. One such approach would be injecting SO2into the stratosphere, which would produce sulfate aerosols that would remain in the atmosphere for 1–3 years, reflecting part of the incoming shortwave radiation. The cooling produced by the aerosols can offset the warming produced by increased greenhouse gas (GHG) concentrations, but it would also affect the climate differently, leading to residual differences compared to a climate not affected by either. Many climate model simulations of geoengineering have used a uniform reduction of the incoming solar radiation as a proxy for stratospheric aerosols, both because many models are not designed to adequately capture relevant stratospheric aerosol processes, and because a solar reduction has often been assumed to capture the most important differences between how stratospheric aerosols and GHG would affect the climate. Here we show that dimming the sun does not produce the same surface climate effects as simulating aerosols in the stratosphere. By more closely matching the spatial pattern of solar reduction to that of the aerosols, some improvements in this idealized representation are possible, with further improvements if the stratospheric heating produced by the aerosols is included. This is relevant both for our understanding of the physical mechanisms driving the changes observed in stratospheric‐sulfate geoengineering simulations, and in terms of the relevance of impact assessments that use a uniform solar dimming.
more »
« less
Solar geoengineering may not prevent strong warming from direct effects of CO 2 on stratocumulus cloud cover
Discussions of countering global warming with solar geoengineering assume that warming owing to rising greenhouse-gas concentrations can be compensated by artificially reducing the amount of sunlight Earth absorbs. However, solar geoengineering may not be fail-safe to prevent global warming because CO2can directly affect cloud cover: It reduces cloud cover by modulating the longwave radiative cooling within the atmosphere. This effect is not mitigated by solar geoengineering. Here, we use idealized high-resolution simulations of clouds to show that, even under a sustained solar geoengineering scenario with initially only modest warming, subtropical stratocumulus clouds gradually thin and may eventually break up into scattered cumulus clouds, at concentrations exceeding 1,700 parts per million (ppm). Because stratocumulus clouds cover large swaths of subtropical oceans and cool Earth by reflecting incident sunlight, their loss would trigger strong (about 5 K) global warming. Thus, the results highlight that, at least in this extreme and idealized scenario, solar geoengineering may not suffice to counter greenhouse-gas-driven global warming.
more »
« less
- Award ID(s):
- 1835860
- PAR ID:
- 10201934
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 117
- Issue:
- 48
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 30179-30185
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The response of the Indian Summer Monsoon (ISM) to global warming, solar geoengineering and its termination is examined using the multi-model mean of seven global climate model simulations from G2 experiment of the Geoengineering Model Intercomparison Project. Under the global warming scenario, land–ocean temperature contrasts and low-level monsoon circulation progressively strengthen accompanied by enhanced precipitation over the Indian subcontinent. Notably, in the solar geoengineered scenario, marginal surface cooling is projected over the majority of the ISM region, and there is strengthening of both upper and lower level circulation. However, preferential precipitation near Western Ghats leads to dry bias over majority of Indian land. Upon the termination of the geoengineering, the climatic conditions—temperature, precipitation, winds and moisture would abruptly change to what it would have been under the global warming scenario. Thus, this may be important to note that such changes may need attention for the future mitigation and adaptation purposes if solar geoengineering is required to implement in future.more » « less
-
Abstract. We present here results from the Geoengineering Model Intercomparison Project (GeoMIP) simulations for the experiments G6sulfur and G6solar for six Earth system models participating in the Climate Model Intercomparison Project (CMIP) Phase 6. The aim of the experiments is to reduce the warming that results from a high-tier emission scenario (Shared Socioeconomic Pathways SSP5-8.5) to that resulting from a medium-tier emission scenario (SSP2-4.5). These simulations aim to analyze the response of climate models to a reduction in incoming surface radiation as a means to reduce global surface temperatures, and they do so either by simulating a stratospheric sulfate aerosol layer or, in a more idealized way, through a uniform reduction in the solar constant in the model. We find that over the final two decades of this century there are considerable inter-model spreads in the needed injection amounts of sulfate (29 ± 9 Tg-SO2/yr between 2081 and 2100), in the latitudinal distribution of the aerosol cloud and in the stratospheric temperature changes resulting from the added aerosol layer. Even in the simpler G6solar experiment, there is a spread in the needed solar dimming to achieve the same global temperature target (1.91 ± 0.44 %). The analyzed models already show significant differences in the response to the increasing CO2 concentrations for global mean temperatures and global mean precipitation (2.05 K ± 0.42 K and 2.28 ± 0.80 %, respectively, for SSP5-8.5 minus SSP2-4.5 averaged over 2081–2100). With aerosol injection, the differences in how the aerosols spread further change some of the underlying uncertainties, such as the global mean precipitation response (−3.79 ± 0.76 % for G6sulfur compared to −2.07 ± 0.40 % for G6solar against SSP2-4.5 between 2081 and 2100). These differences in the behavior of the aerosols also result in a larger uncertainty in the regional surface temperature response among models in the case of the G6sulfur simulations, suggesting the need to devise various, more specific experiments to single out and resolve particular sources of uncertainty. The spread in the modeled response suggests that a degree of caution is necessary when using these results for assessing specific impacts of geoengineering in various aspects of the Earth system. However, all models agree that compared to a scenario with unmitigated warming, stratospheric aerosol geoengineering has the potential to both globally and locally reduce the increase in surface temperatures.more » « less
-
null (Ed.)Abstract Large, abrupt clearing events have been documented in the marine stratocumulus cloud deck over the subtropical Southeast Atlantic Ocean. In these events, clouds are rapidly eroded along a line hundreds–to–thousands of kilometers in length that generally moves westward away from the coast. Because marine stratocumulus clouds exert a strong cooling effect on the planet, any phenomenon that acts to erode large areas of low clouds may be climatically important. Previous satellite-based research suggests that the cloud-eroding boundaries may be caused by westward-propagating atmospheric gravity waves rather than simple advection of the cloud. The behavior of the coastal offshore flow, which is proposed as a fundamental physical mechanism associated with the clearing events, is explored using the Weather Research and Forecasting model. Results are presented from several week-long simulations in the month of May when cloud-eroding boundaries exhibit maximum frequency. Two simulations cover periods containing multiple cloud-eroding boundaries (active periods), and two other simulations cover periods without any cloud-eroding boundaries (null periods). Passive tracers and an analysis of mass flux are used to assess the character of the diurnal west-African coastal circulation. Results indicate that the active periods containing cloud-eroding boundaries regularly experience stronger and deeper nocturnal offshore flow from the continent above the marine boundary layer, compared to the null periods. Additionally, we find that the boundary layer height is higher in the null periods than in the active periods, suggesting that the active periods are associated with areas of thinner clouds that may be more susceptible to cloud erosion.more » « less
-
Abstract Understanding the influence of clouds on amplified Arctic surface warming remains an important unsolved research problem. Here, this cloud influence is directly quantified by disabling cloud radiative feedbacks or “cloud locking” within a state‐of‐the‐art and well‐documented model. Through comparison of idealized greenhouse warming experiments with and without cloud locking, the influence of Arctic and global cloud feedbacks is assessed. Global cloud feedbacks increase both global and Arctic warming by around 25%. In contrast, disabling Arctic cloud feedbacks has a negligible influence on both Arctic and global surface warming. Interestingly, the sum of noncloud radiative feedbacks does not change with either global or Arctic‐only cloud locking. Notably, the influence of Arctic cloud feedbacks is likely underestimated, because, like many models, the model used here underestimates high‐latitude supercooled cloud liquid. More broadly, this work demonstrates the value of regional and global cloud locking in a well‐characterized model.more » « less
An official website of the United States government
