skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1835860

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We propose and unify classes of different models for information propagation over graphs. In a first class, propagation is modelled as a wave, which emanates from a set ofknownnodes at an initial time, to all otherunknownnodes at later times with an ordering determined by the arrival time of the information wave front. A second class of models is based on the notion of a travel time along paths between nodes. The time of information propagation from an initialknownset of nodes to a node is defined as the minimum of a generalised travel time over subsets of all admissible paths. A final class is given by imposing a local equation of an eikonal form at eachunknownnode, with boundary conditions at theknownnodes. The solution value of the local equation at a node is coupled to those of neighbouring nodes with lower values. We provide precise formulations of the model classes and prove equivalences between them. Finally, we apply the front propagation models on graphs to semi-supervised learning via label propagation and information propagation on trust networks. 
    more » « less
  2. Abstract Cloud microphysics is a critical aspect of the Earth's climate system, which involves processes at the nano‐ and micrometer scales of droplets and ice particles. In climate modeling, cloud microphysics is commonly represented by bulk models, which contain simplified process rates that require calibration. This study presents a framework for calibrating warm‐rain bulk schemes using high‐fidelity super‐droplet simulations that provide a more accurate and physically based representation of cloud and precipitation processes. The calibration framework employs ensemble Kalman methods including Ensemble Kalman Inversion and Unscented Kalman Inversion to calibrate bulk microphysics schemes with probabilistic super‐droplet simulations. We demonstrate the framework's effectiveness by calibrating a single‐moment bulk scheme, resulting in a reduction of data‐model mismatch by more than 75% compared to the model with initial parameters. Thus, this study demonstrates a powerful tool for enhancing the accuracy of bulk microphysics schemes in atmospheric models and improving climate modeling. 
    more » « less
  3. Abstract We present a method to downscale idealized geophysical fluid simulations using generative models based on diffusion maps. By analyzing the Fourier spectra of fields drawn from different data distributions, we show how a diffusion bridge can be used as a transformation between a low resolution and a high resolution dataset, allowing for new sample generation of high-resolution fields given specific low resolution features. The ability to generate new samples allows for the computation of any statistic of interest, without any additional calibration or training. Our unsupervised setup is also designed to downscale fields without access to paired training data; this flexibility allows for the combination of multiple source and target domains without additional training. We demonstrate that the method enhances resolution and corrects context-dependent biases in geophysical fluid simulations, including in extreme events. We anticipate that the same method can be used to downscale the output of climate simulations, including temperature and precipitation fields, without needing to train a new model for each application and providing a significant computational cost savings. 
    more » « less
  4. Ensemble Kalman methods, introduced in 1994 in the context of ocean state estimation, are now widely used for state estimation and parameter estimation (inverse problems) in many arenae. Their success stems from the fact that they take an underlying computational model as a black box to provide a systematic, derivative-free methodology for incorporating observations; furthermore the ensemble approach allows for sensitivities and uncertainties to be calculated. Analysis of the accuracy of ensemble Kalman methods, especially in terms of uncertainty quantification, is lagging behind empirical success; this paper provides a unifying mean-field-based framework for their analysis. Both state estimation and parameter estimation problems are considered, and formulations in both discrete and continuous time are employed. For state estimation problems, both the control and filtering approaches are considered; analogously for parameter estimation problems, the optimization and Bayesian perspectives are both studied. As well as providing an elegant framework, the mean-field perspective also allows for the derivation of a variety of methods used in practice. In addition it unifies a wide-ranging literature in the field and suggests open problems. 
    more » « less
  5. Randomized algorithms exploit stochasticity to reduce computational complexity. One important example is random feature regression (RFR) that accelerates Gaussian process regression (GPR). RFR approximates an unknown function with a random neural network whose hidden weights and biases are sampled from a probability distribution. Only the final output layer is fit to data. In randomized algorithms like RFR, the hyperparameters that characterize the sampling distribution greatly impact performance, yet are not directly accessible from samples. This makes optimization of hyperparameters via standard (gradient-based) optimization tools inapplicable. Inspired by Bayesian ideas from GPR, this paper introduces a random objective function that is tailored for hyperparameter tuning of vector-valued random features. The objective is minimized with ensemble Kalman inversion (EKI). EKI is a gradient-free particle-based optimizer that is scalable to high-dimensions and robust to randomness in objective functions. A numerical study showcases the new black-box methodology to learn hyperparameter distributions in several problems that are sensitive to the hyperparameter selection: two global sensitivity analyses, integrating a chaotic dynamical system, and solving a Bayesian inverse problem from atmospheric dynamics. The success of the proposed EKI-based algorithm for RFR suggests its potential for automated optimization of hyperparameters arising in other randomized algorithms. 
    more » « less
  6. We propose a sampling method based on an ensemble approximation of second order Langevin dynamics. The log target density is appended with a quadratic term in an auxiliary momentum variable and damped-driven Hamiltonian dynamics introduced; the resulting stochastic differential equation is invariant to the Gibbs measure, with marginal on the position coordinates given by the target. A preconditioner based on covariance under the law of position coordinates under the dynamics does not change this invariance property, and is introduced to accelerate convergence to the Gibbs measure. The resulting mean-field dynamics may be approximated by an ensemble method; this results in a gradient-free and affine-invariant stochastic dynamical system with desirable provably uniform convergence properties across the class of all Gaussian targets. Numerical results demonstrate the potential of the method as the basis for a numerical sampler in Bayesian inverse problems, beyond the Gaussian setting. 
    more » « less
  7. This work integrates machine learning into an atmospheric parameterization to target uncertain mixing processes while maintaining interpretable, predictive, and well‐established physical equations. We adopt an eddy‐diffusivity mass‐flux (EDMF) parameterization for the unified modeling of various convective and turbulent regimes. To avoid drift and instability that plague offline‐trained machine learning parameterizations that are subsequently coupled with climate models, we frame learning as an inverse problem: Data‐driven models are embedded within the EDMF parameterization and trained online in a one‐dimensional vertical global climate model (GCM) column. Training is performed against output from large‐eddy simulations (LES) forced with GCM‐simulated large‐scale conditions in the Pacific. Rather than optimizing subgrid‐scale tendencies, our framework directly targets climate variables of interest, such as the vertical profiles of entropy and liquid water path. Specifically, we use ensemble Kalman inversion to simultaneously calibrate both the EDMF parameters and the parameters governing data‐driven lateral mixing rates. The calibrated parameterization outperforms existing EDMF schemes, particularly in tropical and subtropical locations of the present climate, and maintains high fidelity in simulating shallow cumulus and stratocumulus regimes under increased sea surface temperatures from AMIP4K experiments. The results showcase the advantage of physically constraining data‐driven models and directly targeting relevant variables through online learning to build robust and stable machine learning parameterizations. 
    more » « less
  8. In this paper, we study efficient approximate sampling for probability distributions known up to normalization constants. We specifically focus on a problem class arising in Bayesian inference for large-scale inverse problems in science and engineering applications. The computational challenges we address with the proposed methodology are: (i) the need for repeated evaluations of expensive forward models; (ii) the potential existence of multiple modes; and (iii) the fact that gradient of, or adjoint solver for, the forward model might not be feasible. While existing Bayesian inference methods meet some of these challenges individually, we propose a framework that tackles all three systematically. Our approach builds upon the Fisher–Rao gradient flow in probability space, yielding a dynamical system for probability densities that converges towards the target distribution at a uniform exponential rate. This rapid convergence is advantageous for the computational burden outlined in (i). We apply Gaussian mixture approximations with operator splitting techniques to simulate the flow numerically; the resulting approximation can capture multiple modes thus addressing (ii). Furthermore, we employ the Kalman methodology to facilitate a derivative-free update of these Gaussian components and their respective weights, addressing the issue in (iii). The proposed methodology results in an efficient derivative-free posterior approximation method, flexible enough to handle multi-modal distributions: Gaussian Mixture Kalman Inversion (GMKI). The effectiveness of GMKI is demonstrated both theoretically and numerically in several experiments with multimodal target distributions, including proof-of-concept and two-dimensional examples, as well as a large-scale application: recovering the Navier–Stokes initial condition from solution data at positive times. 
    more » « less
  9. Supervised operator learning centers on the use of training data, in the form of input-output pairs, to estimate maps between infinite-dimensional spaces. It is emerging as apowerful tool to complement traditional scientific computing, which may often be framedin terms of operators mapping between spaces of functions. Building on the classical ran-dom features methodology for scalar regression, this paper introduces the function-valuedrandom features method. This leads to a supervised operator learning architecture thatis practical for nonlinear problems yet is structured enough to facilitate efficient trainingthrough the optimization of a convex, quadratic cost. Due to the quadratic structure, thetrained model is equipped with convergence guarantees and error and complexity bounds,properties that are not readily available for most other operator learning architectures. Atits core, the proposed approach builds a linear combination of random operators. Thisturns out to be a low-rank approximation of an operator-valued kernel ridge regression al-gorithm, and hence the method also has strong connections to Gaussian process regression.The paper designs function-valued random features that are tailored to the structure oftwo nonlinear operator learning benchmark problems arising from parametric partial differ-ential equations. Numerical results demonstrate the scalability, discretization invariance,and transferability of the function-valued random features method. 
    more » « less
  10. Abstract. Accelerated progress in climate modeling is urgently needed for proactive and effective climate change adaptation. The central challenge lies in accurately representing processes that are small in scale yet climatically important, such as turbulence and cloud formation. These processes will not be explicitly resolvable for the foreseeable future, necessitating the use of parameterizations. We propose a balanced approach that leverages the strengths of traditional process-based parameterizations and contemporary artificial intelligence (AI)-based methods to model subgrid-scale processes. This strategy employs AI to derive data-driven closure functions from both observational and simulated data, integrated within parameterizations that encode system knowledge and conservation laws. In addition, increasing the resolution to resolve a larger fraction of small-scale processes can aid progress toward improved and interpretable climate predictions outside the observed climate distribution. However, currently feasible horizontal resolutions are limited to O(10 km) because higher resolutions would impede the creation of the ensembles that are needed for model calibration and uncertainty quantification, for sampling atmospheric and oceanic internal variability, and for broadly exploring and quantifying climate risks. By synergizing decades of scientific development with advanced AI techniques, our approach aims to significantly boost the accuracy, interpretability, and trustworthiness of climate predictions. 
    more » « less