skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Influence of doped metal center on morphology and pore structure of ZIF-8
Synthesis of ZIF with zinc, cobalt, or copper was carried out by microwaves. The effect of metal center on morphologies and pores of products was studied. Nitrogen adsorption/desorption onto ZIFs was examined by density functional theory. The micro, meso, and macropores of ZIF-8, Zn/Co-ZIF-8, and Cu/ZIF-8 ranged 99.814–99.969%, 0.055–0%, and 0.031–0.130%, respectively. Average pore sizes of ZIF-8, Zn/Co-ZIF-8, and Cu/ZIF-8 are 1.291, 1.194, and 1.164 nm, respectively. Monolayer saturation limits of nitrogen onto ZIF-8, Zn/Co-ZIF-8, and Cu/ZIF-8 were 21.152, 18.943, and 17.784 mmol/g, respectively. Further, the results included densities, total surface areas, total pore volumes, and average particle sizes of ZIF-8, Zn/Co-ZIF-8, and Cu/ZIF-8.  more » « less
Award ID(s):
1561897
PAR ID:
10201980
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MRS Communications
Volume:
9
Issue:
01
ISSN:
2159-6859
Page Range / eLocation ID:
288 to 291
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8 are utilized in adsorbing nitrogen (N 2 ), methane (CH 4 ), and carbon dioxide (CO 2 ) gases at temperatures between 25 and 55°C and pressures up to ~1 MPa. Equilibrium adsorption isotherms and adsorption kinetics are studied. The dual-site Langmuir equation is employed to correlate the nonisothermal adsorption equilibrium behavior. Generally, N 2 showed the lowest equilibrium adsorption quantity on the three samples, whereas CO 2 showed the highest equilibrium adsorption capacity. Amid the ZIF samples, the biggest adsorption quantities of N 2 and CH 4 were onto Zn/Co-ZIF-8, whereas the highest adsorption quantity of CO 2 was on ZIF-8. The isosteric heats of adsorbing these gases on ZIF-8, Co-ZIF-8, and Zn/Co-ZIF-8 were examined. Moreover, the overall mass transfer coefficients of adsorption at different temperatures were investigated. 
    more » « less
  2. Pulsed field gradient (PFG) NMR was used in combination with single crystal IR microscopy (IRM) to study diffusion of ethane inside crystals of a mixed linker zeolitic imidazolate framework (ZIF) of the type ZIF-7-8 under comparable experimental conditions. These crystals contain 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker). It was observed that the PFG NMR attenuation curves measured for ethane in ZIF-7-8 exhibit deviations from the monoexponential behaviour, thereby indicating that the ethane self-diffusivity in different crystals of a crystal bed can be different. Measurements of the ethane uptake curves performed by IRM under the same conditions in different ZIF-7-8 crystals of the bed yield different transport diffusivities thus confirming that the rate of ethane diffusion is different in different ZIF-7-8 crystals. The IRM observation that the fractions of ZIF-8 and ZIF-7 linkers are different in different ZIF-7-8 crystals allowed attributing the observed heterogeneity in diffusivities to the heterogeneity in the linker fraction. The quantitative comparison of the average ethane self-diffusivities measured by PFG NMR in ZIF-7-8 with the corresponding data on corrected diffusivities from IRM measurements revealed a good agreement between the results obtained by the two techniques. In agreement with the expectation of smaller aperture sizes in ZIF-7-8 than in ZIF-8, the average ethane self-diffusivities in ZIF-7-8 were found to be significantly lower than the corresponding self-diffusivities in ZIF-8. 
    more » « less
  3. Abstract Nanoparticles of zeolitic imidazole framework‐8 (ZIF‐8 NPs), which are the subclass of metal‐organic frameworks consisting of Zn ion and 2‐methylimidazole, have been identified as promising drug carriers since their large microporous structure is suited for encapsulating hydrophobic drug molecules. However, one of the limitations of ZIF‐8 NPs is their low stability in physiological solutions, especially in the presence of water and phosphate anions. These molecules can interact with the coordinatively unsaturated Zn sites at the external surface to induce the degradation of ZIF‐8 NPs. In this study, herein a facile approach is reported to enhance the chemical stability of ZIF‐8 NPs by surface coating with polyacrylic acid (PAA). The PAA‐coated ZIF‐8 (PAA‐ZIF‐8) NPs are prepared by mixing ZIF‐8 NPs and PAA in water. PAA coating inhibits the degradation of ZIF‐8 NPs in water as well as phosphate‐buffered saline over 6 days, which seems to be due to the coordination of carboxyl groups of PAA to the reactive Zn sites. Furthermore, the PAA‐ZIF‐8 NPs loaded with the anticancer drug doxorubicin (Dox) show cytotoxicity in human colon cancer cells. These results clearly show the feasibility of the PAA coating approach to improve the chemical stability of ZIF‐8 NPs without impairing their drug delivery capability. 
    more » « less
  4. Sodalite zeolitic-imidazole frameworks (ZIFs) show great potential due to their effective aperture sizes suitable for small gas separations. Numerous efforts have, therefore, been made in tuning their effective aperture sizes to control and enhance their molecular sieving properties. Herein, we present a new strategy to finely tune the effective aperture size of CdIF-1, a cadmium-substituted ZIF-8 analogue, based on thermal amorphization. Among several ZIF-8 analogues screened, CdIF-1 was found to be the only one that could be thermally amorphized. The controlled amorphization reduced the long-range structural order while preserving the short-range order, thereby systematically densifying the ZIF structure and consequently affecting its effective aperture. Meanwhile, it was found that amorphization enhanced the flexibility of the framework, resulting in accessible pores at temperatures above 273 K. As compared to its crystalline counterpart, partially amorphized CdIF-1 showed significantly improved diffusion and adsorption selectivities of n -C 4 H 10 /i-C 4 H 10 ( i.e. , 1.5 → 40.7 and 1.1 → 4.9, respectively), likely due to the amorphization-induced tuning of its effective aperture size. 
    more » « less
  5. Abstract Iron‐nitrogen‐carbon (Fe‐N‐C) single‐atom catalysts are promising sustainable alternatives to the costly and scarce platinum (Pt) to catalyze the oxygen reduction reactions (ORR) at the cathode of proton exchange membrane fuel cells (PEMFCs). However, Fe‐N‐C cathodes for PEMFC are made thicker than Pt/C ones, in order to compensate for the lower intrinsic ORR activity and site density of Fe‐N‐C materials. The thick electrodes are bound with mass transport issues that limit their performance at high current densities, especially in H2/air PEMFCs. Practical Fe‐N‐C electrodes must combine high intrinsic ORR activity, high site density, and fast mass transport. Herein, it has achieved an improved combination of these properties with a Fe‐N‐C catalyst prepared via a two‐step synthesis approach, constructing first a porous zinc‐nitrogen‐carbon (Zn‐N‐C) substrate, followed by transmetallating Zn by Fe via chemical vapor deposition. A cathode comprising this Fe‐N‐C catalyst has exhibited a maximum power density of 0.53 W cm−2in H2/air PEMFC at 80 °C. The improved power density is associated with the hierarchical porosity of the Zn‐N‐C substrate of this work, which is achieved by epitaxial growth of ZIF‐8 onto g‐C3N4, leading to a micro‐mesoporous substrate. 
    more » « less