Individual differences in expertise with non-face objects has been positively related to neural selectivity for these objects in several brain regions, including in the fusiform face area (FFA). Recently, we reported that FFA’s cortical thickness is also positively correlated with expertise for non-living objects, while FFA’s cortical thickness is negatively correlated with face recognition ability. These opposite relations between structure and visual abilities, obtained in the same subjects, were postulated to reflect the earlier experience with faces relative to cars, with different mechanisms of plasticity operating at these different developmental times. Here we predicted that variability for faces, presumably reflecting pruning, would be found selectively in deep cortical layers. In 13 men selected to vary in their performance with faces, we used ultra-high field imaging (7 Tesla), we localized the FFA functionally and collected and averaged 6 ultra-high resolution susceptibility weighed images (SWI). Voxel dimensions were 0.194x0.194x1.00mm, covering 20 slices with 0.1mm gap. Images were then processed by two operators blind to behavioral results to define the gray matter/white matter (deep) and gray matter/CSF (superficial) cortical boundaries. Internal boundaries between presumed deep, middle and superficial cortical layers were obtained with an automated method based on image intensities. We used an extensive battery of behavioral tests to quantify both face and object recognition ability. We replicate prior work with face and non-living object recognition predicting large and independent parts of the variance in cortical thickness of the right FFA, in different directions. We also find that face recognition is specifically predicted by the thickness of the deep cortical layers in FFA, whereas recognition of vehicles relates to the thickness of all cortical layers. Our results represent the most precise structural correlate of a behavioral ability to date, linking face recognition ability to a specific layer of a functionally-defined area.
more »
« less
Thickness of Deep Layers in the Fusiform Face Area Predicts Face Recognition
People with superior face recognition have relatively thin cortex in face-selective brain areas, whereas those with superior vehicle recognition have relatively thick cortex in the same areas. We suggest that these opposite correlations reflect distinct mechanisms influencing cortical thickness (CT) as abilities are acquired at different points in development. We explore a new prediction regarding the specificity of these effects through the depth of the cortex: that face recognition selectively and negatively correlates with thickness of the deepest laminar subdivision in face-selective areas. With ultrahigh resolution MRI at 7T, we estimated the thickness of three laminar subdivisions, which we term “MR layers,” in the right fusiform face area (FFA) in 14 adult male humans. Face recognition was negatively associated with the thickness of deep MR layers, whereas vehicle recognition was positively related to the thickness of all layers. Regression model comparisons provided overwhelming support for a model specifying that the magnitude of the association between face recognition and CT differs across MR layers (deep vs. superficial/middle) whereas the magnitude of the association between vehicle recognition and CT is invariant across layers. The total CT of right FFA accounted for 69% of the variance in face recognition, and thickness of the deep layer alone accounted for 84% of this variance. Our findings demonstrate the functional validity of MR laminar estimates in FFA. Studying the structural basis of individual differences for multiple abilities in the same cortical area can reveal effects of distinct mechanisms that are not apparent when studying average variation or development.
more »
« less
- Award ID(s):
- 1640681
- PAR ID:
- 10201988
- Date Published:
- Journal Name:
- Journal of Cognitive Neuroscience
- Volume:
- 32
- Issue:
- 7
- ISSN:
- 0898-929X
- Page Range / eLocation ID:
- 1316 to 1329
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The cortical column is one of the fundamental computational circuits in the brain. In order to understand the role neurons in different layers of this circuit play in cortical function it is necessary to identify the boundaries that separate the laminar compartments. While histological approaches can reveal ground truth they are not a practical means of identifying cortical layers in vivo. The gold standard for identifying laminar compartments in electrophysiological recordings is current-source density (CSD) analysis. However, laminar CSD analysis requires averaging across reliably evoked responses that target the input layer in cortex, which may be difficult to generate in less well-studied cortical regions. Further, the analysis can be susceptible to noise on individual channels resulting in errors in assigning laminar boundaries. Here, we have analyzed linear array recordings in multiple cortical areas in both the common marmoset and the rhesus macaque. We describe a pattern of laminar spike–field phase relationships that reliably identifies the transition between input and deep layers in cortical recordings from multiple cortical areas in two different non-human primate species. This measure corresponds well to estimates of the location of the input layer using CSDs, but does not require averaging or specific evoked activity. Laminar identity can be estimated rapidly with as little as a minute of ongoing data and is invariant to many experimental parameters. This method may serve to validate CSD measurements that might otherwise be unreliable or to estimate laminar boundaries when other methods are not practical.more » « less
-
Abstract Research using functional and structural magnetic resonance imaging has identified areas of reduced brain activation and gray matter volume in children and adults with reading disability, but associations between cortical structure and individual differences in reading in typically developing children remain underexplored. Furthermore, the majority of research linking gray matter structure to reading ability quantifies gray matter in terms of volume, and cannot specify unique contributions of cortical surface area and thickness to these relationships. Here, we applied a continuous analytic approach to investigate associations between distinct surface-based properties of cortical structure and individual differences in reading-related skills in a sample of typically developing young children. Correlations between cortical structure and reading-related skills were conducted using a surface-based vertex-wise approach. Cortical thickness in the left superior temporal cortex was positively correlated with word and pseudoword reading performance. The observed positive correlation between cortical thickness in the left superior temporal cortex and reading may have implications for the patterns of brain activation that support reading.more » « less
-
Spatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. Here we show that in face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage are smaller and shifted downward in response to face inversion. From these measurements, we successfully predict the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial processing in face-selective regions may enable holistic perception. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior.more » « less
-
Recently deep learning has become dominant in face recognition and many other artificial intelligence areas. We raise a question: Can deep learning truly solve the face recognition problem? If not, what is the challenge for deep learning methods in face recognition? We think that the face image quality issue might be one of the challenges for deep learning, especially in unconstrained face recognition. To investigate the problem, we partition face images into different qualities, and evaluate the recognition performance, using the state-of-the-art deep networks. Some interesting results are obtained, and our studies can show directions to promote the deep learning methods towards high-accuracy and practical use in solving the hard problem of unconstrained face recognition.more » « less
An official website of the United States government

