skip to main content


Title: Two Approaches to Teaching with NetLogo: Examining the Role of Structure and Agency
This study is from a larger design-based research project contributing to efforts to incorporate CT into K-12 education by studying how middle school students can learn about CT in the context of programming and art. During the first year of the study, we held a five-day summer camp taught by four mathematics teachers using NetLogo. This poster begins to examine the role of the teachers, focusing on the strategies they used to position themselves and the structure and agency of each task.  more » « less
Award ID(s):
1742257
NSF-PAR ID:
10202106
Author(s) / Creator(s):
Editor(s):
Gresalfi, M.S.
Date Published:
Journal Name:
The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020
Volume:
4
Page Range / eLocation ID:
2419-2420
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As professional science becomes increasingly computational, researchers and educators are advocating for the integration of computational thinking (CT) into science education. Researchers and policymakers have argued that CT learning opportunities should begin in elementary school and span across the K‐12 grades. While researchers and policymakers have specified how students should engage in CT for science learning, the success of CT integration ultimately depends on how elementary teachers implement CT in their science lessons. This new demand for teachers who can integrate CT has created a need for effective conceptual tools that teacher educators and professional development designers can use to develop elementary teachers' understanding and operationalization of CT for their classrooms. However, existing frameworks for CT integration have limitations. Existing frameworks either overlook the elementary grades, conceptualize CT in isolation and not integrated into science, and/or have not been tested in teacher education contexts. After reviewing existing CT integration frameworks and detailing an important gap in the science teacher education literature, we present our framework for the integration of CT into elementary science education, with a special focus on how to use this framework with teachers. Situated within our design‐based research study, we (a) explain the decision‐making process of designing the framework; (b) describe the pedagogical affordances and challenges it provided as we implemented it with a cohort of pre‐ and in‐service teachers; (c) provide suggestions for its use in teacher education contexts; and (d) theorize possible pathways to continue its refinement.

     
    more » « less
  2. In an effort to deepen learning in K-12 science classrooms, there has been a national movement to integrate computational thinking (CT). The purpose of this phenomenographic study was to understand teachers’ perceptions of the function and usefulness of a task analysis and a decision tree tool designed to help them with integration. Teachers participated in a long-term professional development to improve their knowledge and application of CT and then developed lesson plans integrating CT into science investigations. To assist in the integration, teachers used the two unique tools. No one lesson plan or content area addressed all of the CT practices, but all CT practices were addressed in lessons across all four science areas. All 19 teachers found that the task analysis tool helped them to shift their lessons to a student-centered focus and helped them pinpoint data practices so they could systematically integrate CT practices. However, they expressed confusion over the amount of detail to document on the tool. Similarly, teachers found both benefits and barriers to the decision tree tool. Teachers found the decision tree tool to be useful in predicting the ways students may misunderstand a data practice and in reflecting on the level of accomplishment of students. However, teachers were sometimes uncertain with how to efficiently document complex student behaviors when engaged with data practices and CT. Implications for the use of the two lesson planning tools is discussed. 
    more » « less
  3. Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities. 
    more » « less
  4. Despite increasing attention to the potential benefits of infusing computational thinking into content area classrooms, more research is needed to examine how teachers integrate disciplinary content and CT as part of their pedagogical practices. This study traces how middle and high school teachers (n = 24) drew on their existing knowledge and their experiences in a STEM professional development program to infuse CT into their teaching. Our work is grounded in theories of TPACK and TPACK-CT, which leverage teachers’ knowledge of technology for computational thinking (CT), CT as a disciplinary pedagogical practice, and STEM content knowledge. Findings identify three key pedagogical supports that teachers utilized and transformed as they taught CT-infused lessons (articulating a key purpose for CT infusion, scaffolding, and collaborative contexts), as well as barriers that caused teachers to adapt or abandon their lessons. Implications include suggestions for future research on CT infusion into secondary classrooms, as well as broader recommendations to support teachers in applying STEM professional development content to classroom practice. 
    more » « less
  5. null (Ed.)
    Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities. 
    more » « less