Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This paper outlines the potential gains for Constructionist research and praxis in modelling that might be obtained by recognising the power of the Patch—a humble computational being in the NetLogo modelling environment that has been overshadowed by its more popular fellow agent, the Turtle. To contextualise this opportunity, I describe how Constructionist modelling has thrived by promoting forms of learning that rely on learners’ identifying with agents. I argue that patches are a neglected agent type in this multi‐agent modelling tradition, and that the possibilities for learners to adopt the patch perspective in support of exploratory forms of modelling and aesthetic expression have been under‐researched. Nevertheless, I show there are a variety of powerful ways for learners––both individually and in groups––to identify with patches. I describe ongoing research showing how taking an aesthetic approach to patches has the potential to support individuals and groups in powerful forms of learning with and about multi‐agent modelling. Practitioner notesWhat is already known about this topicTurtles (movable agents in Logo and Constructionist environments descended from Logo) can be ‘transitional objects’ that provide learners a way to make powerful ideas their own.These agents can be powerful ‘objects‐to‐think‐with’ in large part because they encourage learners to identify with them in a form of learning known as ‘syntonic learning’.Expressive activities that draw on learners’aestheticinterests can support their learning with and about computational representations.Multi‐agent modelling is a powerful extension of Logo‐based learning environments that provides access to powerful ideas about complex systems and their emergent properties.In the multi‐agent setting, individual learners and/or groups of learners can identify syntonically with agents to provide entry points for reasoning about complexity.What this paper addsPatches (non‐movable agents in the NetLogo modelling environment) are under‐represented in the research on multi‐agent modelling, and the potential for learners to adopt the patches’ perspective has been neglected.An aesthetically driven approach to patches can ground students’ understanding of their expressive value.Participatory activities in which learners play the role of patches (called ‘Stadium Card’ activities) can ground the patch perspective, so that learners can achieve a form of syntonicity and/or collectively adopt the perspective of patches in the aggregate.Participatory activities that blend intrinsic and extrinsic perspectives on the patch grid can further enhance learners’ facility with programming for patches and their understanding of patches’ collective expressive power.Implications for practice and/or policyBalancing the focus between turtles and patches can enrich the modelling toolbox of learners new to agent‐based modelling.Patchesdocapture important aspects of individual and collective experience, and so can be good objects‐to‐think‐with, especially when conceptualising phenomena at a larger scale.The expressive potential of the patch grid is an important topic for computer science as well (eg, through 2D cellular automata). This is a rich context for learning in itself, which can be made accessible to groups of learners through physical or virtual participatory role‐play.Moreover, physical or virtual grids of people‐patches may exhibit novel aggregate computational properties that could in turn become interesting areas for research in computer science.more » « less
-
Research on geometric transformations suggests that early learners possess intuitive understandings grounded in motion metaphors, transitioning to mappings. The processes through which students transition between these two conceptions are not fully understood. We propose that Vygotskian hybridizing (related to Vygotsky’s articulation of everyday and scientific concepts) may provide a lens for thinking about the relationship between these conceptions. Design features of block-based programming environments provide affordances to support hybridizing by providing a co-action space for learning. We conducted a comparative case study of four grade seven and eight students working in a Scratch task (Code the Quilts) and a game (Transformations Quest) to construct understandings of geometric transformations. Our findings suggest: (1) students hybridized their personal experience of motion and mathematical knowledge of mapping to build geometric transformations understandings and (2) the co-action space in which students worked promoted distributed interactions between students, block-based environments, and tasks to support hybridizing.more » « less
-
What does it mean for a game to engage players in academically meaningful play? Much has been written about the integration of educational learning within the design of games in terms of intrinsic/endogenous design. While these framings capture the positioning of learning within games, they provide less insight into what might distinguish design choices that are powerful in terms of both learning and gameplay from design choices that might be limiting from one or both of these perspectives. In this article, we therefore propose a framework for thinking about academically meaningful play that builds upon and extends more general ideas about meaningful play (Salen & Zimmerman, 2003). The proposed framework focuses on (a) discernability of choice outcomes, (b) integration of choice outcomes into unfolding game state, (c) meaningful choices grounded in core academic ideas, and (d) thematic and challenge access. We analyze three academic games that focus on geometric transformations as comparative cases to consider the potential affordances of the proposed framework for analyzing the implications of design choices.more » « less
-
This paper considers how a curricular design that integrated computer programming and creative movement shaped students’ engagement with computing. We draw on data from a camp for middle schoolers, focusing on an activity in which students used the programming environment NetLogo to re-represent their physical choreography. We analyze the extent to which students noticed incompatibilities (mismatches between possibilities in dance and NetLogo), and how encountering them shaped their coding. Our findings suggest that as students attended to incompatibilities, they experienced struggle, but persisted and engaged in iterative cycles of design. Our work suggests that tensions between arts and programming may promote student engagement.more » « less
-
Olanoff, D. (Ed.)STEM integration holds significant promise for supporting students in making connections among ideas and ways of thinking that might otherwise remain “siloed.” Nevertheless, activities that integrate disciplines can present challenges to learners. In particular, they can require students to shift epistemological framing, demands that can be overlooked by designers and facilitators. We analyze how students in an 8th grade mathematics classroom reasoned about circles, across math and coding activities. One student showed evidence of shifting fluently between different frames as facilitators had expected. The dramatic change in his contributions gauge the demands of the activities, as do the contributions of other students, who appeared to work within different frames. Our findings have relevance for the design and facilitation of integrated STEM learning environments to support students in navigating such frame-shifts.more » « less
-
de Vries, E.; Hod, Y.; null (Ed.)This paper explores an episode of epistemic injustice that develops between two students with help from two teachers. Our analysis seeks to demonstrate not only that epistemic injustice has occurred, but also, how, and why it matters. In particular, we explore the idea of credibility deficit as helping to account for how and why one student’s contributions were routinely sidelined or ignored, and how that repeated positioning led to the ultimate act of testimonial injustice and its outcome, a wrong in the form of a loss of opportunity to learn.more » « less
-
de Vries, E. (Ed.)This symposium addresses dance as a site for STEM learning. We present papers from five research projects that each sought to engage youth in embodied STEM learning using dance, exploring the power of creative embodied experiences and the body’s potential as an expressive tool and resource for learning. We show how dance activities expanded access to STEM and supported sense-making; how dancer and dance-making practices were leveraged to support computational thinking, modeling, and inquiry; and how moving bodies in creative ways helped to generate new insights by allowing for new perspectives. Across our work, we seek to understand the multiple, rich learning opportunities that emerge from working across the arts and sciences, dance and STEM. Together our research shows that attending to opportunities for STEM engagement and learning through dance practices can broaden access to learning and engagement in STEM for all.more » « less
-
de Vries, E. (Ed.)Computer programming has been conceptualized as an expressive medium, but little is known about how to best support students in exercising agency and engagement in coding tasks. This paper draws on data from a five-day summer camp for middle school students that integrated computer science and movement. We focus on an activity in which students created choreography and modeled it in the programming environment NetLogo. The task was designed with the goal of creating opportunities for students to exercise agency and expressivity while coding. We analyze the extent to which incompatibilities, or moments of mismatch between what is possible in the dance versus NetLogo environments, shaped students’ agency and exploration. Our findings suggest that designing with incompatibilities positioned students with agency over their models and supported their own expressive goals.more » « less
-
null; null; null; null (Ed.)This paper analyzes the computational practices that four 7th and 8th grade students engaged in when learning geometric transformations in two different online block-based programming environments. The data sources include video footage of students’ interviews in Zoom where they shared their screens and cameras. The findings determined that students utilized in particular, decomposition and pattern recognition as important computational thinking practices required for learning in STEM disciplines. The paper also describes the changes made in how research method, data collection, and analysis configured opportunities to study computational thinking in remote locations due to the restrictions brought on by COVID-19. We identified three main challenges in the transition to online research: (a) recruiting research participants which included instituting necessary revisions to ethics protocols; (b) rethinking data gathering and analysis techniques along with interactions with participants in virtual settings; (c) dealing with glitches associated with technologies and virtual communication media in just-in-time ways. We conclude that even given the challenges with researching during COVID-19, there are still opportunities for rich, robust research in online settings.more » « less
-
de Vries, E. (Ed.)This study investigates how the design of hybrid mathematics and computational activities influences the ways in which students leverage ideas from both disciplinary topics. We examine two design cycles of a computer programming summer camp for middle school students which foreground computational thinking and then mathematics alongside computational thinking respectively. We review the rationale for each design iteration, the trends we saw in students’ engagement, and the implications for students’ reasoning. Findings of this study demonstrate the importance of thinking critically about the boundary objects that are included in design that support students to make bridges between multiple disciplinary practices.more » « less