skip to main content


Search for: All records

Award ID contains: 1742257

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract  
    more » « less
  2. This paper considers how a curricular design that integrated computer programming and creative movement shaped students’ engagement with computing. We draw on data from a camp for middle schoolers, focusing on an activity in which students used the programming environment NetLogo to re-represent their physical choreography. We analyze the extent to which students noticed incompatibilities (mismatches between possibilities in dance and NetLogo), and how encountering them shaped their coding. Our findings suggest that as students attended to incompatibilities, they experienced struggle, but persisted and engaged in iterative cycles of design. Our work suggests that tensions between arts and programming may promote student engagement. 
    more » « less
  3. Olanoff, D. (Ed.)
    STEM integration holds significant promise for supporting students in making connections among ideas and ways of thinking that might otherwise remain “siloed.” Nevertheless, activities that integrate disciplines can present challenges to learners. In particular, they can require students to shift epistemological framing, demands that can be overlooked by designers and facilitators. We analyze how students in an 8th grade mathematics classroom reasoned about circles, across math and coding activities. One student showed evidence of shifting fluently between different frames as facilitators had expected. The dramatic change in his contributions gauge the demands of the activities, as do the contributions of other students, who appeared to work within different frames. Our findings have relevance for the design and facilitation of integrated STEM learning environments to support students in navigating such frame-shifts. 
    more » « less
  4. de Vries, E. (Ed.)
    This study investigates how the design of hybrid mathematics and computational activities influences the ways in which students leverage ideas from both disciplinary topics. We examine two design cycles of a computer programming summer camp for middle school students which foreground computational thinking and then mathematics alongside computational thinking respectively. We review the rationale for each design iteration, the trends we saw in students’ engagement, and the implications for students’ reasoning. Findings of this study demonstrate the importance of thinking critically about the boundary objects that are included in design that support students to make bridges between multiple disciplinary practices. 
    more » « less
  5. de Vries, E. (Ed.)
    This symposium addresses dance as a site for STEM learning. We present papers from five research projects that each sought to engage youth in embodied STEM learning using dance, exploring the power of creative embodied experiences and the body’s potential as an expressive tool and resource for learning. We show how dance activities expanded access to STEM and supported sense-making; how dancer and dance-making practices were leveraged to support computational thinking, modeling, and inquiry; and how moving bodies in creative ways helped to generate new insights by allowing for new perspectives. Across our work, we seek to understand the multiple, rich learning opportunities that emerge from working across the arts and sciences, dance and STEM. Together our research shows that attending to opportunities for STEM engagement and learning through dance practices can broaden access to learning and engagement in STEM for all. 
    more » « less
  6. de Vries, E. (Ed.)
    Modeling is generally recognized as the core disciplinary practice of science. Through examinations of rich learning environments which expand the boundaries of modeling and the practices connected to it, researchers are broadening what modeling means in disciplinary settings. This interactive session brings together a diverse spectrum of scholars to share the practices they have used to expand modeling, how they were used in their curriculum, and the impact they had on learning. This session will serve as a rich opportunity for discussion to help advance the state of the field around what counts as modeling and the role it can play in learning. 
    more » « less
  7. de Vries, E. (Ed.)
    Computer programming has been conceptualized as an expressive medium, but little is known about how to best support students in exercising agency and engagement in coding tasks. This paper draws on data from a five-day summer camp for middle school students that integrated computer science and movement. We focus on an activity in which students created choreography and modeled it in the programming environment NetLogo. The task was designed with the goal of creating opportunities for students to exercise agency and expressivity while coding. We analyze the extent to which incompatibilities, or moments of mismatch between what is possible in the dance versus NetLogo environments, shaped students’ agency and exploration. Our findings suggest that designing with incompatibilities positioned students with agency over their models and supported their own expressive goals. 
    more » « less
  8. de Vries, E. ; Hod, Y. ; null (Ed.)
    This paper explores an episode of epistemic injustice that develops between two students with help from two teachers. Our analysis seeks to demonstrate not only that epistemic injustice has occurred, but also, how, and why it matters. In particular, we explore the idea of credibility deficit as helping to account for how and why one student’s contributions were routinely sidelined or ignored, and how that repeated positioning led to the ultimate act of testimonial injustice and its outcome, a wrong in the form of a loss of opportunity to learn. 
    more » « less
  9. null ; null ; null ; null (Ed.)
    This paper analyzes the computational practices that four 7th and 8th grade students engaged in when learning geometric transformations in two different online block-based programming environments. The data sources include video footage of students’ interviews in Zoom where they shared their screens and cameras. The findings determined that students utilized in particular, decomposition and pattern recognition as important computational thinking practices required for learning in STEM disciplines. The paper also describes the changes made in how research method, data collection, and analysis configured opportunities to study computational thinking in remote locations due to the restrictions brought on by COVID-19. We identified three main challenges in the transition to online research: (a) recruiting research participants which included instituting necessary revisions to ethics protocols; (b) rethinking data gathering and analysis techniques along with interactions with participants in virtual settings; (c) dealing with glitches associated with technologies and virtual communication media in just-in-time ways. We conclude that even given the challenges with researching during COVID-19, there are still opportunities for rich, robust research in online settings. 
    more » « less
  10. Tangney, B ; Byrne, J.R. ; Girvan, C. (Ed.)
    Agent-based modelling (ABM) is a powerful approach for simulating complexity and for understanding the emergent phenomena core to multiple disciplines across the physical and social sciences (Wilensky, 2001). ABM is thus often understood as an innovation in STEM education, providing a representational infrastructure for understanding complexity by “growing it” (Epstein & Axtell, 1996; Wilensky & Papert, 2010). While this is certainly true, we argue that expressive and artistic uses of “swarms” of computational agents can also provide accessible entry points for learners and can support them in developing a range of intuitions about the kinds of phenomena that they might simulated with ABM. This offers a “STEAM” oriented introduction to modelling, connecting artistic perspectives with scientific perspectives in fundamental ways. In this paper we describe the iterative design and implementation of activities that highlight the expressive potential and social syntonicity (Brady et al, 2016) of one of the fundamental types of agent in the ABM toolkit (the “patches”). We describe a setting in which we have done design-based research over two years, in summer camps (entitled “Code Your Art”) and school-year activities involving rising fifth through eighth grade students (participants aged from 10-15) attending school in a mid-sized urban district in the southeastern USA with a high proportion of traditionally underserved and minoritized youth. 
    more » « less